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Executive Summary

The presented report summarizes work performed within research project FA8655-09-1-3060
- Cooperative Adversarial Reasoning and Planning in Complex Environments. The aim of the
project was to leverage and extend the results of the successfully completed FA8655-07-1-3083
project - Agent-based Computing in Distributed Adversarial Planning.

The projects investigated the problem of adversarial reasoning and planning, i.e. goal-oriented
decision making in the presence of other adversarial actors. In contrast to existing approaches,
our line of research addresses the problem within the context of complex, asymmetric domains
with properties similar to those found in real-world conflict situations (a higher number of parties,
asymmetry in party’s objectives and resources, huge state space etc.). The focus of the previous
project was on fully non-cooperative scenarios. The current project took into consideration also
(partial) explicit cooperation among individual parties in the scenario. The pursued approach com-
bines theoretical analysis with practical algorithm development with strong emphasis on empirical
evaluation using a multi-agent adversarial behavior testbed.

The project delivered the following specific results:

– extended formal framework for adversarial reasoning – The framework refines the con-
cepts defined in our previous work and adds notions related to creating, maintaining and
reasoning about coalitions in adversarial and semi-cooperative settings.

– extended adversarial behavior testbed – The existing testbed was adjusted to allow ne-
gotiations and explicit coordination among the players. New testing scenarios that require
coordination of self-interested parties were developed.

– agent subset adversarial search – A novel algorithmic scheme for substantial speed-up of
generic adversarial-search based algorithms has been developed, implemented and exten-
sively evaluated within the testbed.

– sub-game negotiation tree search – The algorithm uses negotiation among self-interested
parties to create mutually more beneficial plans. An agent is expected to agree to deviate
from its optimal uncoordinated plan only if it improves its position.

– process models for opponent modeling – We have analyzed the suitability of business
process models for creating models of opponents with internal states. We experimentally
evaluate plausibility of learning such models and discuss their usability in (semi) cooperative
environment.

– deception in large adversarial scenarios – We have formally defined the notion of decep-
tion for teams of mobile sensing agents and we have developed algorithms that are robust
against this form of adversarial behavior.

The scientific results of this project have been published at a premier conference in the field
of Autonomous Agents and Multi-Agent Systems – AAMAS 2010, conference on Computational
Intelligence and Games (CIG2010) and they will be shortly submitted to the International Journal
of Autonomous Agents and Multi-agent Systems.
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Chapter 1

Introduction

When multiple (teams of) agents operate towards their own goals in a shared environment, situ-
ations may arise in which the actions and strategies of individual agents interfere. Examples of
such scenarios include military operations, traffic control, disaster recovery etc. A characteris-
tic feature of such situations, often termed games is that the outcome of an agent’s actions and
sequences of actions depends on the actions chosen by others. One of the fundamental prob-
lems of operating in such game scenarios is deciding on the course of action, understanding that
any such course can be affected by the activity of other agents, who autonomously act towards
achieving their own objectives in the shared environment.

In many of these scenarios, the individual (teams of) agents are not willing to communicate and
coordinate their action choices in advance. Keeping the future actions private leads to the ele-
ment of surprise, which is generally desirable in adversarial settings. This is the typical case in
military conflicts or law enforcement operations and also the main focus in our previous research
project (FA8655-07-1-3083 – Agent-based Computing in Distributed Adversarial Planning). In
these scenarios, the only way how to adjust agent plans to actions of the other agents is to model
its behavior and predict its further actions. The other extreme are the situations with fully coop-
erative agents that share a common goal and create joint plans to achieve them, i.e. the agents
form a single team. Agents in the real world scenarios are typically in between these extremes.
They often have their own objectives and motivations, but they are willing to communicate and co-
ordinate as long as it supports achieving their own goals. For example, military and humanitarian
organization in a region may have completely different objectives and no motivation to fully coop-
erate, but they are still willing to coordinate if it is beneficial for both parties. This project studies
intelligent planning and decision making in adversarial as well as the described semi-cooperative
settings.

1.1 Project Objectives

Besides other results, our previous research in the area of adversarial planning and reasoning
has identified the key future research directions in the area of automated planning of actions for
agent in complex real world conflict situations. The three of them, which were pointed out in the
proposal of this project are:
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1. Complexity – Unlike classical academic games which are still the subject of most current
adversarial planning and search methods, real-world adversarial domains, with asymmetry
of the goals, dynamics in the changes in the environment, non-determinism and concurrency
of player’s actions, entail huge branching factors and enormous search spaces. Scalability of
adversarial reasoning methods to such a class of problems is a persistent challenge.

2. Uncertainty – Realistic adversarial domains are partially observable and typically contain
non-determinism in the outcomes of actions performed by players in the domain. Although
reasoning under uncertainty in adversarial scenarios has been studied in the AI research, it
generally assumed that the partial information is caused by natural limitation of the agents.
Another important cause of uncertainty in conflict situations the intentional information ma-
nipulation by the adversary – deception.

3. Cooperation – In many realistic adversarial scenarios, individual players can be to various
degrees cooperative, willing collaborate or at least coordinate in their decision-making and
planning. Inter-player relationships may have a substantial impact on the form and inter-
actions of strategies considered by individual actors. As such, they need to be properly
represented and reflected in the reasoning and planning algorithms.

The objective of this project was to investigate selected aspects of the listed challenges. In order
to achieve this objective, we have defined four research tasks.

1. RT1: Formal Framework and Testbed for Cooperative Adversarial Reasoning Define a new
collaborative adversarial planning framework for adversarial reasoning scenarios with possi-
ble coalitions. Define and implement a testbed for simulating complex adversarial scenarios
where players can form into coalitions.

2. RT2: Scalable Adversarial Planning and Search Define and implement improvements of
Goal-Based Game-Tree Search algorithm in order to support complex scenarios suitable
for collaborative adversarial search and planning techniques.

3. RT3: Cooperative Opponent Modeling Creating representations of various kinds of infor-
mation about other agents behavior with focus on universality and cooperative and semi-
cooperative environments. Namely focusing on suitability for sharing and negotiating about
(parts of) the models and describing coalition bindings between the agents.

4. RT4: Cooperative Adversarial Search Designing algorithms and protocols that enable coali-
tions of agents to efficiently create common strategies that are more favorable for the agents
then strategies created without coordination. Moreover, these strategies will allow saving
computational resources by sharing results of computations that would have to be performed
by each of the agents without the coalition.

1.2 Overview of Project Results

In this final report, we deliver the following six main results.

1. Extended Formal Framework for Adversarial Reasoning
2. Extended Adversarial Behavior Testbed
3. Agent Subset Adversarial Search (ASAS)
4. Sub-game Negotiation Tree Search (SGNTS)
5. Process Models for Opponent Modeling
6. Deception in Teams of Mobile Sensing Agents
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Figure 1.1: The overview of the research directions defined in the proposal, resulting research tasks and
the achieved results.

The relation of these results to the individual research tasks and objectives of the project is de-
picted in Figure 1.1. The result 6 was not originally included in the plan for the project and it
does not directly support any of the research tasks. However, it supports all three main research
directions defined in the project proposal.

In the following, we briefly overview the components and refer to the respective chapters where
the results are described in detail.

1.2.1 Extended Formal Framework for Adversarial Reasoning

The team of this project focuses on the research of adversarial behavior in multi-agent systems
already for a longer period of time. During this research, we continuously develop and refine a
formal map of the most fundamental concepts related to adversarial reasoning in multi agent sys-
tems, their relations and properties. Our former result in this line of research include the tri-base
acquaintance model (3bA) [1], the model of interaction stance of the agents [2], or the concep-
tual framework of adversarial planning [3]. In this report, we utilize the experience gained during
our work on this project to further refine some aspect of the previously introduced models. We
relate the different kinds of knowledge describing agent’s behavior to the popular BDI framework
to make them more accessible for researchers in the field of autonomous agents and multi-agent
systems. After that, we investigate how the 3bA model needs to be modified in order to appro-
priately describe the social reasoning of an agent in presence of adversaries. Our results in this
tasks are reported in Chapter 3.

1.2.2 Extended Adversarial Behavior Testbed

Most of the experimental results presented in this report were obtained from the adversarial rea-
soning testbed implemented for the previous project and described in [3]. However, the testbed
needed several adjustments in order to support the research tasks of this project. These are
presented in Chapter 3 of this report.

The improvements fit into three categories. First, we have implemented ASAS and SGNTS algo-
rithms within the testbed. Now it provides even stronger players that can be used in development
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of other adversarial reasoning techniques. A decent player that can handle reasonably large set-
tings in the testbed is useful as a comparison for any methods developed in future. Moreover, it
can be used as the adversary in development of other game playing techniques and as the object
of opponent modeling.

The second category of changes in the testbed are the new testing scenarios. In order to demon-
strate higher scalability of the methods developed in this project, we had to increase the size of the
main testing scenarios. A new testing scenario was also developed to clearly show the benefits
of cooperation among self-interested agents in complex asymmetric games.

The third improvement is implementation of a software component capable of logging the events
in the game in the standard MXML file format. This format is used as the input to many available
tools for further analysis of the logs.

1.2.3 Agent Subset Adversarial Search

Agent Subset Adversarial Search is a novel algorithmic scheme that is the main result of our effort
on RT2. This scheme allows asymptotic reduction of the computational complexity of multi-agent
adversarial search. We describe the method in Chapter 4. The main idea of the approach is
to decompose the game into a set of smaller overlapping sub-games featuring only a subset of
the players, solve each sub-game separately, and then combine the results into a global solution.
We present two variants of the sub-results merging algorithms with different applicability trade-
offs. One of them reduces the exponential dependence of the adversarial search complexity
on the number of agents to polynomial, the other cannot guarantee as strong reduction in the
computational effort, but it achieved better game playing performance. Still, the proposed method
is targeted only to the domains with sparse agents’ interactions.

The proposed algorithmic scheme can be used in combination with various adversarial search
algorithms. We have implement it on top of the goal-based game tree search (GB-GTS) developed
in the previous project. The experimental evaluation was conducted in our adversarial behavior
testbed. The results show that the ASAS heuristic often finds the same solutions as the complete
GB-GTS search, but the search efficiency is significantly improved.

1.2.4 Sub-game Negotiation Tree Search

As a result of our work on RT4, we deliver analysis of cooperation of self-interested agents with
respect to disclosure of their plans. We focus on a fully distributed approach without the pres-
ence of any third-party mediator. Our approach models the situation as a non-zero-sum n-player
game in extensive form. Our results can be divided into two parts: (1) the analysis of the maxi-
mal possible improvement of the utility value that an agent can gain by cooperation, and (2) the
novel negotiation-based algorithm which enables the agents to find a better solution without the
necessity to reveal complete plans to each other. The experimental evaluation is performed both
on synthetic games abstracting real world scenarios and in our adversarial behavior testbed. First
we analyze the options for finding generally more preferable plans based on domain parameters.
Then the utility achieved by agents using the proposed cooperation method is compared to the
utility value obtained without cooperation. We investigate the dependence of these values on the
search depth, the number of players in the game, correlation of the players utility functions, etc.
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The analysis on the synthetic game allowed us to easily vary the domain parameters and inves-
tigate the properties of the algorithm. The experiments from the adversarial behavior testbed
confirm that the abstract game is a good model of cooperation in complex asymmetric game. We
were able to observe the cooperation that leads to improvement of the utility of both negotiating
agents also in this scenario. The detailed description of the proposed method and the experimen-
tal analysis is provided in Chapter 5.

1.2.5 Process Models for Opponent Modeling

While working on RT3, we have performed initial literature survey and analysis of requirements
of an opponent model representation suitable for (semi)cooperative settings. In these setting,
agents are assumed to collaborate on modeling common adversaries, share/trade the acquired
opponent models and use the predictions of their private models within their temporary coalitions.

The results related to this problem are presented in Chapter 6. We have identified the formalisms
for capturing and analyzing business processes (e.g. Petri nets) to be a promising language
for this general task. The process description formalisms are more general then Finite State
Machines often used for modeling intelligent behavior in research as well as industry. In addition
to the power of FSM, they allow capturing team behavior, pursuit of multiple goals and other forms
of concurrent behavior.

We have performed several proof-of-concept experiments concerning using processes to model
behavior of intelligent agents in our adversarial behavior testbed. We have implemented an agent
that logs selected events in the system into a general XML format usable by various process
analysis frameworks. We have identified a publicly available software framework for automatic
extraction of process models from such XML logs of events in a system. Using the standard
methods available in the software, we were able to extract useful models of agents behavior.
This supports our assumption, that the process description formalisms and the related tools are
powerful enough to describe and extract models of agents in complex asymmetric games. We
have also identified several limitations of the existing methods and suggested developing more
specific methods that could overcome these limitations.

We did not continue any further in this research direction. We have not implemented the col-
laborative methods on top of process models of other agents’ behavior in this project. We have
decided to use most of the effort planned for this task to support collaborative effort on a slightly
different topic, closely related to the objectives of this project. See Section 1.2.7 for further details.

1.2.6 Deception in Large Adversarial Scenarios

We study deception created by the adversary in order to minimize the efficiency of a team of mo-
bile sensing agents. To our best knowledge, this is the first work that deals with deception in this
setting. We employ a game theoretic model to analyze the expected strategy of the adversary and
find the best response. More specifically, we consider that the adversary deceptively changes the
importance that agents give to targets in the area. The opponent is expected to use camouflage
and decoys in order to create confusion among the sensors regarding the importance of targets,
and reduce the team’s efficiency in target coverage.

We formally represent the Mobile Sensor Team problem based on the Distributed Constraint Op-
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timization Problem (DCOP) framework. We extend the formulation of mobile senor team problem
previously developed at CMU by possible deception from the adversary. We propose a method
for selecting the optimal target to be covered by a single agent facing a deceptive adversary.
This method serves as a heuristic for agents to select their position in the full scale problem with
multiple agents in a large area. Our empirical study featuring teams of over a hundred agents
demonstrates the success of our model compared with baseline solutions as well as existing
models in the presence of deceptions.

In addition to the more applied results concerning deception, we have identified the fundamental
problem of using stochastic local strategies in local search methods for solving DCOP. We provide
the first local search algorithms for solving this variant of DCOP.

This work was a result of collaborative effort and some of the co-authors are not authors of this
report. That is why these results are reported in form of a journal article attached to this report in
Appendix A.

1.2.7 Discussion

The study of deception does not directly support any of the research task listed above. It broadens
the formal conceptual framework from RT1 by formally defining the notion of deception and it
partially supports RT4 by creating algorithms for explicit cooperation of large teams of agents
against a common adversary. The focus on large cooperative settings in adversarial environment
extends our research of explicit cooperation and scalability in adversarial reasoning. Moreover,
it directly addresses also the third key challenge of adversarial planning identified in the project
proposal – uncertainty in agents’ observations.

We have decided to reallocate most of the research effort planned for cooperative opponent mod-
eling to study of deception, because of its high relevance for the project and a unique collaboration
opportunity. We managed to obtain a Czech government grant intended to co-fund a collaborative
research effort between ATG and Intelligent Software Agent’s Lab of Katia Sycara at Carnegie
Mellon University. The main objective of the collaboration is to leverage the state of the art in the
field of adversarial planning, which is well aligned with the objectives of this project. The additional
funding allowed two three months long visits of a research team member and two one week long
visits of the principal investigator at CMU.

This intensive collaboration allowed us to combine the expertise of our research groups and effi-
ciently address more challenging problem than we originally intended. Together with our partner,
we were able to deliver results of high quality and significance for the project. The main results of
the first three months of this collaboration were published as a full paper on a premiere conference
in the field of Autonomous Agents and Multi-Agent Systems – AAMAS 2010. This work was fur-
ther extended and an advanced draft of a journal version of the paper is included as Appendix A
of this report.

1.3 List of Publication Supported by the Project

The scientific results achieved during the progress of this project are part of the following publica-
tions:
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– V. Lisý, R. Zivan, K. Sycara, M. Pěchouček: Deception in Networks of Mobile Sensing Agents.
In Proc. of 9th Int. Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 2010)

– V. Lisý: Adversarial Planning for Large Multi-agent Simulations. In Proc. of 9th Int. Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS 2010)

The following paper is accepted for publication:

– V. Lisý, B. Bošanský, R. Vaculı́n, M. Pěchouček: Agent Subset Adversarial Search for Com-
plex Non-cooperative Domains. In Proc. of the 2010 IEEE Conference on Computational
Intelligence and Games (CIG 2010)

Beside these accepted papers, we have two more publications in the stage of advanced drafts,
which will be submitted shortly. Namely, it is an extended version of the paper on deception,
which is included in this report as Appendix A. We plan to submit it for the Journal of Autonomous
Agents and Multi-Agents Systems in August of 2010. The second paper will be based on the
interesting problem and results presented in Chapter 5 of this report.
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Chapter 2

Extended Adversarial Behavior
Testbed

This chapter describes the extensions to the adversarial behavior testbed originally implemented
and presented in [3]. The testbed is used for performing the experiments with adversarial rea-
soning and planning algorithms in realistic adversarial domains. At first, we remained the basic
scenario and rules of the game from [3], and we follow by enhancements made in this project to
support the solved research tasks.

2.1 Original Game

In [3] the Tsunami recovery game was introduced. The game is a representative of a complex
asymmetric game of n-players modeled after a disaster recovery operation in a politically unstable
environment. There are three players in the game: government, non-governmental humanitarian
organization, and separatists. Each player controls multiple units that are placed in the game
world represented by a planar graph forming a network of roads. Any number of units can be
located in each vertex of the graph and each unit can change its position to an adjacent vertex in
one game move. Some of the vertices of the graph contain cities, which can take in commodities
players use to construct buildings or to produce other commodities.

Some of the cities have been hit by a natural disaster. As the result, these cities lack infrastructure
(indicated by the light gray number in the city status) and they do not have government head
quarters (a blue GovHQ indicator). This means that the government has no control over the
cities. The cities also need to be provided with food (the green number in the city status) by a
non-government organization whose goal is to transport food from farms (a green Farm indicator)
to cities that need it. The food in the cities is consumed over time. The cities controlled by
government have a full-width blue bar shown next to them, the cities that are not controlled by
government and have enough food have a half-width green bar, and a city without food has a
small red bar.

In order to restore the control, the government has to first transport explosives from explosives
factory (an orange Fact indicator) to a quarry (a yellow Quarry indicator) where they are used to
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Figure 2.1: The screenshot of the games scenario in the adversarial behavior testbed.
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produce stones that are later used in damaged cities by engineer units to repair the infrastructure
and build the headquarters. The transportation of stones and explosives is performed by trucks.

However, there are separatists trying to prevent the government from achieving control in the
cities. The separatists steal the explosives from the government trucks and store them in their
separatist camps (the red GngHQ indicator). If they have enough explosives they carry out a
suicide bomb attack that destroys the government headquarters in a chosen city. Moreover, the
separatist can destroy the food supplies in food transport causing a riot in the city with food
shortage that lead to destroying the government HQ.

The utilities representing the objectives of the players are expressed as weighted sums of com-
ponents, such as the number of cities with sufficient food supply, or the number of cities under the
control of the government.

2.2 Improvements

Several improvements in the testbed has been implemented in order to correctly evaluate the
newly developed approaches to game playing and opponent modeling in complex asymmetric
games.

2.2.1 Agent Subset Adversarial Search

Besides the implementation of the algorithm itself, there were only minor modifications in the
testbed needed to evaluate ASAS. In comparison to the full GB-GTS algorithm, the ASAS method
evaluates significantly less nodes in the game tree; hence it can be applied on a larger scenario.
More specifically, we used a scenario with 9 operating units and 6 cities (see Section 4.4.1 for
more detailed description of the scenario). The most significant change in the testbed was nec-
essary as a part of the implementation of the sub-result merging algorithm of the ASAS method
(see Section 4.3.3). The goals defined in the testbed and used by the GB-GTS algorithm were
enhanced with explicit representation of the information about their preconditions and effects in
terms of variables from the domain. This way we managed to split the domain when possible dur-
ing the merging search. Note, that adding this type of knowledge into the goals opens a possibility
for applying more advanced reasoning about goals into GB-GTS (e.g. as a heuristic function for
selecting the first move to evaluate) in the future work.

2.2.2 Sub-Game Negotiation Tree Search

In the case of Sub-Game Negotiation Tree Search, we have implemented multiple enhancements
of the testbed. First of all, the scenario needed to be changed in order to offer the possibility
for negotiation between the players. The utility values for already existing players (government,
non-government organization, and separatists) are mostly negatively correlated and the actions
of the players do not offer a good potential for negotiation and cooperation.

Therefore we introduce a new separatist player that has utility values similar to the first separatist
player. They both want to destroy the government HQs in the cities, but newly there is a difference
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between who has the control over the city. In the original version of the game the city either has
been under the government control or not. In the version of the game used for SGNTS evaluation,
we differentiate between four states: government controls the city, first separatist controls the city,
second separatist controls the city, and no player controls the city. Moreover, several rules of the
game had to be updated – (1) for a player in order to gain control in the city by force, the number
of its units has to be higher that the number of units in the same city owned by any other player.
However, if there are e.g. two gangster units (one of each player) and one cop in one city, then
the government looses the control, but no separatist player gains it. The rules concerning stealing
and destroying commodities transported by trucks are modified in a similar way – if number of
all gangster units of all separatist players is higher than number of cops protecting the truck,
the stealing/destroying is successful – the stolen commodity is given to a separatist player with
highest number of units.

The separatist players use a sub-game negotiation-based algorithm described in Section 5.3 and
communicate with each other in order to improve their strategies in the game. As a result the
separatist players can avoid a centipede-like situations in the game (see Section 5.4 for more
specific scenario in the Tsunami recovery game, where such a situation can occur) while still
preserving their self-interest nature of the players.

By implementing the separatist players willing to communicate and cooperate with each other we
created more sophisticated opponents with more realistic behavior, which allow the separatist to
take advantage of the asymmetric utility values in the domain.

2.2.3 MXML Logger Agent

Another improvement of the testbed is implementation of LoggerAgentProM, its data structures
and the related system of logging the events in the game into the standard Mining XML file format.
This log currently contains all the actions performed by the agent in the simulation and it can be
easily extended to include also the event caused by the dynamics of the game, such as food
consumption. Capturing the log in this general format allowed us to use publicly available state of
the art framework for analyzing the log and extracting models of behavior of individual agents.
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Chapter 3

Extended Formal Framework for
Adversarial Reasoning

This chapter refines and extends the framework of concepts, methods and entities involved in
adversarial planning introduced in [3]. The framework serves as a common reference and vocab-
ulary for describing and comparing specific (components) of adversarial planning methods. First
we introduce the formal definition of the domain, in which the agents operate. Then we focus on
the information about opponent agents that is important in the process of adversarial reasoning.
Afterwards we set this information into a generalized interaction among the agents as well as
among the different kinds of knowledge within an agent.

3.1 Game World

In this Chapter, we use the same formalization of the game world as in our previous works [3, 2].
The domain can be formalized as a tuple (I,A,W,O, τ).

– I is a finite set of agents (players) – indexed by 1, . . . , n – capable of performing actions in
the world.

– Ai is a set of actions an agent i ∈ I can perform, and A = Xi∈I Ai is a set of joint actions
where each ~a ∈ A (~a = 〈a1, . . . , an〉, ai ∈ Ai) denotes a joint action.

– W is the set of possible world states
– Oi is a set of observations for agent i and O = Xi∈I Oi is the set of joint observations where
o = 〈o1, . . . , on〉 denotes a joint observation

– τ :W ×A →W is the transition function realizing one move of the game, where the game
world is changed via joint action of agents and the world’s own dynamics.

The set of the world states is represented by values of variables {x1, . . . , xm} = D, i.e., W is the
set of all valuations of these variables. We denote the set of all valuations of a set of variables S
by S̄ (i.e., D̄ =W). Each action ai ∈ Ai uses a subset pre(ai) ⊆ D of variables in its preconditions
and it modifies a subset eff(ai) ⊆ D of variables by its execution. Finally, we define a plan of an
agent i as a finite sequence of actions, i.e., p = (a1, . . . , ad), aj ∈ Ai, j ∈ {1, . . . , d}.
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The game proceeds in moves. In one move, each player chooses one of its legal actions. Next
state of the world and the information the players get about it is chosen according to the transition
probabilities T .

3.2 Single Agent Models

In this section, we classify the basic minimal set of different types of knowledge that is necessary
do describe behavior of single agent, without considering its interaction with other agents. The
most popular paradigm for description and specification of agents behavior is the BDI model.
The information about any of these basic concepts of agents’ reasoning can be very useful in a
multi-agent system.

3.2.1 Believes

The concept of belives is usually used for representation of agent knowledge for the purpouse of
modeling reasoning and rationality. The agents can create believes about wide variaty of compo-
nents of the world, such as state of the world, other agents’ intentions, and inter-agent relations.
Modeling other agents’ believes is very useful especially in domains with partial information. For
example in the military domain, the agent can gain a considerable advantage if he knows that the
opponent is unaware of some of the agents’ well positioned resources. However, the knowledge
about the opponent’s believes can be very useful even in the domains with full information about
the game state. In that case we mainly deal with the believes in form of the social knowledge - an
object and product of agents’ opponent modeling processes. The opponent can create believes
about other agents future actions that can be exploited or manipulated.

3.2.2 Desires

Agents’ desires represent the agents preferences and top level goals. Knowing other agent’s
desires can help agents to anticipate future course of action of the other agents even without any
communication. They can create expectation about whether the other agents will try to prevent
them from achieving their goals or support them in their effort. The top level desires also define
the potential of the agents to create coalitions.

There are two basic forms of explicit representation of agent’s top level desires in agents literature.
The one that is more usual in intelligent planning and BDI literature is the logical representation of
a goal as a formula defining a set of states (or traces) that represent satisfaction of the goal. The
satisfaction of such goal is strict. It is either satisfied or not and the notion of partial satisfaction is
not well defined.

The second form of top level goals representation is more common in the Game Theory. It is
a preference relation over the states (or traces) of the world. Generally, it is a partial ordering
representing that the agent prefers one state of the world to another. This preference is often
linear and represented by a mapping to the set of real numbers (e.g., utility theory [4]). In this
case, the goal of the agent is optimizing its course of action to achieve as high preference value
as possible, rather than satisfying a strict criterion.
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The second approach is more general. If we define the preference value of the world states with
the goal satisfied as 1 and the preference value of the remaining states as 0, we can easily rep-
resent the goals. This representation is suitable mainly for descriptive tasks and for that reason,
it was also used as a base for the formal framework developed in the previous project [3]. The
knowledge about agents desires is referred to as the declarative player model in the report. It
assumes a mapping from the set of world state to vectors of real numbers

f :W → Rn (3.1)

describing several characteristics of the world states that influence how agents prefer individual
world states. The actual utility of a state for the player is then defined as a linear combination of
these characteristics with player specific weights.

This representation fits well the structure of players desires in the real world problems and allows
us to define various interaction stance among the agents [2], such as adversarial behavior of one
agent towards another.

Describing agent using (multi-valued) utility is very suitable for descriptive and analytic tasks, but
without further refining of the mapping, it hides a lot of information that can be used for creating
efficient game playing algorithms. E.g. it disallows using the methods based on heuristic forward
search.

Moreover, the representation of the utility function as a task for adversarial planning by human
expert would most likely need to have some structure. It is not possible to assign a vector of real
values to each of the (possibly infinite) number of states. A reasonable representation would be
to create a number of formulas describing various properties of the state and assigning each of
them the vector of real values representing the influence of the formula to individual utility factors.
For example, capturing a city can mean improvement of the military dominance factor, but it can
mean also decrease in the amount of food supplies if the civilians in the city need to be fed. The
utility of a world state is then a sum of all the satisfied utility formulas. Formally, we refine the
definition of the mapping from formula 3.1 by firstly defining a set of utility formulas U .

Definition 1 We define the set of utility formulas U , as a set of formulas of a language. Each of
the formulas defines a subset of all possible world states in which it satisfied.

Additionally, we define a mapping representing the additive influence of the satisfaction of the
formula to individual utility factors.

Definition 2 We define the utility increment of a formula to be a mapping

v : U → Rn

Using the previously defined notions, the function mapping world states to the vectors of real
numbers can be refined as

f(w) =
∑

φ∈U :w|=φ
v(φ) (3.2)

The multidimensional representation of the utility is not only intuitive in representation of various
measures that may be important for the agents, but it is also very expressive. It allows encoding
arbitrary partial (preference) order among the states of the game, which is the most general
representation of agents desires.
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Lemma 1 Any partial ordering among the states of the game can be expressed as a multi-
dimensional utility function with natural ordering relation

~u ≤ ~v ⇔ ∀i∈{1,...,n}ui ≤ vi

Proof This fact is true even if we allow only binary vectors instead of real vectors. The authors
in [5] show that lower semi-lattice can be encoded into a vector of bits with the natural ordering.
In order to use this fact, it is sufficient to add an additional (virtual) state that is worse than all the
other world states.

The transformation to the multi-dimensional utility does not reduce the expressivity of the frame-
work. However, the final linearization by individual agent preferences already creates a linear
order among the world states. This might reduce the expressivity of the framework, because it is
sometimes hard to aggregate incomparable measures, such as having something done faster or
cheaper. On the other hand, the agent can always choose only from a limited number of actions
and it has to choose only one action to perform at the end. Having two incomparable actions to
choose, the agent has to come up with another criterion to choose the action to perform, or it
really does not care about the ordering and hence it would be equally satisfied with any of the
orderings.

The representation of the utility function as a set of formulas corresponding to vector utility values
has several advantages. First of all, it is fully compatible with the previously defined notion of
declarative player model [3] and player interaction stances [2]. Second, it allows heuristic guid-
ance of the game playing algorithms. The agent can identify the utility formulas it would prefer to
be satisfied (unsatisfied) and use their logical structure to generate heuristics that would lead its
planning effort in a similar way as in the state of the art single agent planning systems [6]. Third,
description of sets of states using logical formulae is fairly compact and hence suitable for sharing
with other agents.

3.2.3 Intentions

Intentions in the BDI framework may be seen as agents internal commitment to implement an
action [7]. In our opponent modeling framework developed in [3], it corresponds to the procedural
player model, describing the probability distribution over players next actions based on the current
state of the world and assumed internal state of the opponent.

P (Ai|W, Si) (3.3)

The main question this kind of model answers about the opponents is what will their next actions
be in certain state of the game. If other players in the game are cooperative, we can simply ask
them a about their next actions and coordinate. In case of non-cooperative agents (opponents),
we need to create a predictive model to efficiently react to their actions.

Reactive Agents The situation is simpler if we model purely reactive opponents that choose
their next actions solely based on the current state of the game world. Even if the action selection
mechanism is stochastic, the model that can fully capture it is a mapping from the current world
state to the distribution over the applicable actions of the opponent.

P (Ai|W)
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Complex agents in real world situations are rarely purely reactive. They build internal believes
about the world and create longer plans that are executed over multiple time steps. However, even
if the modeled agent is not fully reactive, approximating its behavior using a reactive model can
certainly be useful. In [8, 9], agent models in form of P (A) and P (A|W ) are used as automatically
learned domain specific knowledge. This knowledge is used to guide node selection and play-out
phases of the UCT [10] (Monte-Carlo based) adversarial search. The reported results show that
even using the a priory action probability distribution P (A) not conditioned by anything can focus
the search in UCT and lead to a much more successful player. They achieved superior playing
performance in simple games, such as checkers and larger versions of tic-tac-toe.

Agents with Internal State Even the simplest forms of models of agents action selection mech-
anism can be efficient in increasing playing performance and reducing computational afford needed
for adversarial reasoning. On the other hand, the more precise and more expressive is the model
of the opponents’ behavior, the stronger is the reduction in computational effort needed to create
good courses of action.

In order to create even more precise models of opponent behavior, we need to add the distinction
between opponent’s internal states. The opponent can choose different actions if it believes it is
winning the game, or based on its current believes about the other agents strategies. This leads
us to procedural opponent model in form of equation (3.3).

The specific forms of implementation of the model of intentions of agents with internal states are
further discussed in Chapter 6.

3.3 Means of Agent Interactions

This section formally defines the concepts describing various levels of cooperation of (groups)
of agents. It refines our previous work [2], defining adversarial, cooperative and self-interested
actions solely based on agents utility function and actions they choose among all applicable alter-
natives. Here we take into account also the aspects that were not part of the earlier model, such
as inter-agent communication and trust. We also extends the model of Social Reasoning in Com-
putational Multi-Agent Systems by Pěchouček et al [7] that was designed mainly for cooperative
multi-agent systems.

3.3.1 Awareness

One of the most basic requirements for an agent in order to intentionally interact with another
agents is its awareness of the other agents existence. That is why [7] defines the total neighbor-
hood of an agent.

Definition 3 The total neighborhood of an agent i is a set of agents α(i) ⊆ I that the agent is
aware of.

This notion is very important in reasoning about (adversarial) situation. The agent can pursue
a completely different course of action if he is not aware of some reserves of the opponent.
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Alternatively, its plan can collide even with activities of its (potential) allies if it is not aware of them
and cannot coordinate with them.

3.3.2 Communication

Another key element in multi-agent interactions is communication among the agents. It is the
main mean of interaction, but it is not always possible or desirable. The simplest example are
purely adversarial situation, such as sports games, tactical military missions, or law enforcement
operations. In these situations, the agents from different teams do not explicitly communicate and
obtain all the information about the world and opponents actions only from their observations.
Communication is often not desirable also in cooperative setting. The motivation for that varies
from minimizing obtrusiveness of the system that assists/support the user [11], the need to keep
radio silence in military operation or time critical (military) situations where explicit communication
is too slow and distractive to relay on. In order to capture these situations, we extend the Social
Reasoning Model by the notion of communication neighborhood.

Definition 4 The communication neighborhood of an agent i is a set of agents κ(i) ⊆ α(i) that
the agent is aware of and with whom he is able and willing to communicate.

Note that as the total neighborhood of an agent, the relation of belonging to an agents commu-
nication neighborhood is not necessarily symmetric. The communication can be available only in
one direction.

3.3.3 Environmental Coupling

In many (mainly adversarial) domains, the only mean of agent’s interaction are their actions in
a shared environment. For example in game of chess, the only interaction is via moves on the
chessboard. This interaction is often available even in absence of communication. There are two
kinds of environmental coupling. The weak environmental coupling is if the agents can observe
the effects of the other agent’s action in the environment and the strong environmental coupling
is if one agent is capable of negating the preconditions or effects of actions of the other agent.

Definition 5 The weak environmental coupling neighborhood of an agent i is a set of agents
χw(i) ⊆ α(i), such that

j ∈ χw(i)⇔ ∃aj ∈ Aj , oi ∈ Oi eff(aj) ∩ oi 6= ∅

Definition 6 The strong environmental coupling neighborhood of an agent i is a set of agents
χs(i) ⊆ χw(i), such that

j ∈ χs(i)⇔ ∃ai ∈ Ai, aj ∈ Aj eff(aj) ∩ (pre(ai) ∪ eff(ai)) 6= ∅

3.3.4 Modeling Other Agents

In absence of communication and high dependence of the performance of agent’s plans on the
other agents, an agent can improve its performance by creating a model of other agents’ behavior
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and using them to predict its actions. We summarize the different kinds of knowledge that can
be acquired about opponents in Section 3.2. Here we define the modeling neighborhood of an
agent.

Definition 7 The modeling neighborhood of an agent i is a set of agents mo(i) ⊆ α(i), whose
models agent i acquires, maintains and/or uses in its reasoning process

This neighborhood does not have to be disjoint with communication neighborhood of the agents.
Even if the agents communicate, they may not be willing to share exact information about their
future action.

3.4 Purpose of Interaction

After defining the main capabilities of agents that concerns the other agents, we can focus on the
purpose of the agents interaction. In this subsection, we will try to answer the question: Why do
the agents interact? Even though explicit interaction in more common in cooperative setting and
interaction through modeling the other agents is more common in adversarial setting, the purpose
of interaction is in general orthogonal to the means used for interaction.

3.4.1 Future Actions Coordination

When acting in a shared environment with other agents, a special form of non-determinism in out-
come of agent’s actions occurs. The actual outcome does not only depend on the actions chosen
by the agent, but it can be strongly influenced by the actions of other agents. Any information
about the future actions of other agents can help the agent to be more efficient.

Coordination among the cooperative agents is often necessary to achieve a persistent joined goal
[12], which is a basic building block of cooperation among the agents. This notion is used to
define the most important cooperative structures, such as notions of alliance, coalition and team
[7]. Cooperative agents often need to coordinate, because their capabilities are not sufficient to
achieve their individual goals on their own, or simply because they are a part of a team and their
objective is to satisfy the team goal. An example of coordination in the interest of team objective
allocation of individual agents for various tasks in disaster rescue scenarios [13]. Coordination of
agents with different capabilities to achieve goals that would not be achievable by the agents on
their own can be seen for example in many planning domains [14].

Coordination of actions is common also among self-interested agents. The efforts leading to
satisfaction of agents own goals can be beneficial for all the participating agents. A clear example
of this phenomenon is Air Traffic Control [15], where avoiding collision is clearly beneficial and the
goals of individual airplanes are often disjoint. Rational self-interested agents are always willing
to coordinate if it improves the expected utility of their plans. These situations are often studies in
the field of Game Theory as pre-play communication. However, this phenomenon was previously
studied in the context of simple matrix games. One of the contributions of this project is the
analysis in the context of more complex extensive form games presented in Chapter 5.
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3.4.2 Knowledge Sharing

A more complex form of agents interaction is knowledge sharing. The hard requirement for knowl-
edge sharing is the ability of explicit communication. Agent i can share knowledge with agent j
only if the following holds.

j ∈ κ(i)

Knowledge sharing is a more general form of agents’ interaction then action coordination. The
communicated knowledge can include also knowledge about future actions of an agent. The most
commonly shared kinds of knowledge are following.

– knowledge about the actual state of the world
– background knowledge about domain properties
– knowledge of algorithms useful in the domain (closely related to reflection [16])
– knowledge about agents intentions and models of their behavior
– knowledge about inter-agent relations

The cooperative agents share their knowledge either as a default design decision or intentionally,
in order to promote easier satisfaction of joined goals. Knowledge sharing among cooperative
agents has been analyzed in [7]. Knowledge sharing in self-interested or adversarial setting is
much less studied, but also not uncommon. For example, several self-interested (competitive)
agents facing the same adversary can share knowledge about the model of the adversary in
order to make it less efficient. Our group had previously studied this phenomenon on examples
of logistics companies facing bandits attacking their transports [17], or a general abstract model
learning tasks [18].

Deception

A special form of knowledge sharing is present also among adversarial agents. It is generally
used to deceive the adversary to perform actions that are suboptimal. There are two basic form
of deception, based on the capabilities of the agents that is being deceived.

Most real world agents are not perfectly rational, which means they have biases that can lead to
accommodating false believes because of insufficient modeling of trustworthiness of knowledge
sources. In this case, the goal of deception is to provide the other agent information that lead to
creating false believes. In order for an agent to accommodate and use this kind of information, it
usually has to believe that the information was not provided intentionally by the adversary, e.g. the
information is provided by a third party. The notions of intentional and unintentional knowledge
disclosure are define in [7].

Another option, why an agent might be willing to use the information provided by its adversary is if
the adversary cannot completely prevent the agent from acquiring the information. For example,
the agents can partially perceive the information by its sensors. Even these situations enable the
use of deception by the adversary. If the adversary can partially influence the knowledge that will
be available to the agents (such as importance of a target) it can use this capability to minimize
the utility of the information. As a part of this project, we have studied this form of deception in the
domain of sensor networks facing decoys and camouflaged targets. This research was conducted
in cooperation with Carnegie Mellon University and the results are summarized in a draft of paper
attached at the end of this report.
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Figure 3.1: The schema of the tri-base acquaintance model.

3.5 Generalized Tri-base Acquaintance Model

The basic BDI model we use in the previous section is mostly used for describing the reasoning
process of single intelligent agent without the need for extensive reasoning about other actions,
their goals and capabilities. In order to focus on the collaborative aspects of multi-agent systems,
more specific models of acquisition, maintenance and use of social knowledge must be used.
One of such models is also the Tri-base Acquaintance Model (3bA) developed earlier at CTU.
This model assumes mostly cooperative collective of agents and provides a formal framework
decomposition, delegation and monitoring of collaborative tasks. We summarize the main ideas
of the model in the next section and then we analyze the extensions necessary to use the model
in setting with cooperative as well as neutral and adversarial agents.

3.5.1 Original Tri-base Acquaintance Model

The work on the 3bA model is quite extensive and it has found its applications in multiple domains.
Here, we sketch only it basic ideas and the details can be found e.g. in [1]. The models divide the
components needed for planning collaborative tasks in cooperative multi-agent system into three
bases.

– co-operator base (CB) – maintains permanent information on cooperating agents (i.e.: their
addresses, communication languages, and their predefined responsibilities). This type of
knowledge is expected not to be changed very often.

– task base (TB) – stores in its problem section (PRS) the general problem solving knowledge
- (i) information on possible decompositions of the tasks to be coordinates by the agents and
(ii) in its plan section (PLS) it maintains the actual and most up-to-date plans on how to catty
out those tasks

– state base (SB) – stores in its agent section (AS) all information on the current load of co-
operating agents. This part of the state base is updated frequently and informs the agent
who is busy and who is available for collaboration. In the task section (TS) there is stored
information on the status of tasks the agent is currently solving.

The schema of the model is depicted in Figure 3.1. If the agent is planning a new task (top level
goal), it chooses a suitable task decomposition rule from PRS. It identifies the optimal collabora-
tors from CB and stores the created plan (e.g. task assignments) to PLS. These plans are then
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gradually updated based on current information about the collaborating agents in SB.

3.5.2 3bA with Non-cooperative Agents

The 3bA model was developed mainly to facilitate collaboration among a group of agents in envi-
ronments, where agents need to combine their capabilities to perform complex task, which would
not be achievable by an agent on its own. This means that other agents in the system are as-
sumed to either collaborate with the agent of not to interact with him at all. In many real world
multi-agent systems, the interaction stances among the agents are more complex. We have ana-
lyzed and formally define all this options as a part of the preceding project [3]. We have identified
the basic interaction stance as cooperative, competitive, self-interested, altruistic and adversar-
ial. Agents having any of these stance towards the agent of interest1 can influence applicability
and efficiency of agent’s plans. For this reason, the co-operator base needs to be extended to
include also the information about the other (non-cooperating) agents. In the generalized tri-base
acquaintance model (G3bA), we call the base storing the knowledge about the relevant agents in
the system the other agents base (OAB).

The names of the other two bases remain unchanged and still represent the same basic kinds of
knowledge. The state base stores the information about other agents’ current states and the task
base still represent the components related to the planning process of the agent of interest.

Other Agents Base

At least some of the other agents are cooperative in most settings. Therefore, OAB contains the
same information as the original CB about these agents. However, there is much higher variety of
useful information about other agents in the general (not necessarily cooperative) settings. The
information in OAB is structured based on the neighborhoods defining the means of interactions
with those agents. Each neighborhood implies the need to store a different kind of knowledge
about the other agent. If an agent belongs to multiple neighborhoods, the knowledge correspond-
ing to each of them is stored.

– total neighborhood – For all the agents in its total neighborhood, the agent stores a subset of
data defined in the CB of 3bA

OAB(i) ⊇ {< j, β(j) >}∀j∈α(i)

where β(j) represent the capabilities of agent j. The capabilities can be the set of tasks the
agent can decompose (as in case of 3bA), but it can include even more general concepts,
such as the set of actions that can be performed by the agent (Aj). The capabilities are
stored for whole the total neighborhood, because any interaction or reasoning about other
agents includes its capability, regardless of its interactions stance of mean of interaction.

– communication neighborhood – For the agents in its cooperation neighborhood, the agent
stores the remaining data from CB of 3bA

OAB(i) ⊇ {< j,Addr(j), Lang(j) >}∀j∈κ(i)

where Addr(j) is the physical address where the communication to j should be addressed
(e.g. IP address) and Lang(j) is the language in which agent j communicates. Note that the

1the agent using the proposed acquaintance model
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data stored in these two structures do not have to be changed from the 3bA model, because
they do not depend on the exact interaction stance among the agents.

– modeling neighborhood – For the other agents that are the object of modeling, the agent has
to store their models. We have formally defined the different kinds of models that can be
aquired about another agents in [3].

OAB(i) ⊇ {< j,OMdec(j),OMproc(j) >}∀j∈mo(i)

where OMdec is the declarative opponent model and OMproc is the procedural opponent
model. These models can be acquired either by communication with other agents of au-
tomatically extracted using the opponent modeling tools.

State Base

This knowledge base still contains the task section that stores the same information about the
state of the active tasks of the agent. It contains the information about the progress of the task
execution and the believe that the task will be accomplished. In particular, it reflects failure of
execution of a task.

The agent section has to include additional information. Instead of more specific current capability
and load of the agent from 3bA, this section of the state base includes a general information about
the internal states of the other agents and the actual action that have performed

AS(i) ≡ {< j, State(j),Action(j),Trust(j) >}∀j∈χs(i)

where the Trust has the same measure of trust in this piece of information as in 3bA. The State
is a subset of the set of all internal states of agent j, which agent i believes might be the current
internal state of agent j. The Action(j) is the current action performed by agent i.

Task Base

The task base is composed of the same two sections as in the case of original 3bA.

TB(i) ≡< PRS(i),PLS(i) >

The problem section (PRS) of the TB contains the fixed planning knowledge for the domain. It
is some compact representation of the set of plans that an agent can use to achieve its goals. It
directly corresponds to the domain heuristic (DH) defined in [3]. The plan section has to be more
general then in 3bA. It includes the current intentions of agent i.

Dynamics of Reasoning with G3bA

Reasoning of an agent using the G3bA model is composed of three mostly independent processes
running between each pair of bases in G3bA. The schema of the dynamics of G3bA model is
depicted in Figure 3.2. In the following description, we always refer to the agent using G3bA from
whose perspective we explain the processes as agent i.
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Figure 3.2: The schema of the dynamics in the generalized tri-base acquaintance model.

deliberation If the agent acquires a new high level goal it starts the deliberation process in
the model. It identifies the set of suitable plans for achieving this goal in PRS section of the
task base. These options are matched against OAB to find the most suitable collaborators that
could support successful completion of the goal, but at the same time OAB is searched also
for the agents that can negatively interact with the plan. Then there are two ways in which the
deliberation may proceed. (1) For the agents are in the communication neighborhood of agent i,
they can try to negotiate about a coordinated course of actions that would be beneficial for both
agent i and the other agent. In case of cooperative agents, they can use any method of multi
agent planning (MAP) to make it efficiently. If the agents are self-interested, the methods of MAP
are not sufficient, but they can still coordinate using the SGNTS method developed in this project
(see Chapter 5). (2) For agents that are in the modeling neighborhood of agent i, it uses their
opponent models to reduce the set of possible plans to those that are likely to succeed. In this
process, various algorithms developed within this project (such as GB-GTS, IROP, ASAS) can be
used. If the most suitable plan is identified, it is stored in PLS of the task base of the agent.

execution The plans stored in PLS can be either executed immediately, if all the collaborators
are available and all the potential adversaries are in an acceptable state, or it can remain in PLS
until a suitable opportunity arises for execution of the plan execution. When the plan is executed,
the progress of the subtasks, commitments of the collaborators and the threats from the adversary
are monitored in the state base. It a plan execution fails of is situation changes so that it is not
likely that the plan will succeed, the execution process updates the task base. It removes the plan
that is no longer applicable from PLS. Moreover, it can produce a new high level goal that will
trigger a new deliberation process.

opponent modeling The last process modifying the knowledge bases is opponent modeling.
It creates the higher level generalizations of the continually changing information about the other
agents. This information is then used for creating predictions about other agent and for consider-
ation of the influence of their actions to the plans of agent i. We describe a specific method for
extraction of OMdec and the purely reactive version of OMproc in the previous project [3] and we
provide an initial study of acquiring more complex form of OMproc in Chapter 6.

3.6 Language

Our original adversarial planning framework as well as the current extension defines most of the
concepts by means of sets, sequences and relations. These definitions are very general, however,
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if we want to use them in a specific application or reason about their higher level properties, we
usually cannot represent them explicitly by enumeration of all the members of the set. We need a
more compact representation with clear unambiguous semantics. Creating sound languages for
representing complex phenomena is widely studied in the field of mathematical logics. Here, we
summarize the most important requirements on a language, which can be used for representing
the defined concepts. After that, we review the existing logics that satisfy these requirements to
different levels.

In order to cover most of the concepts and phenomena present in our adversarial planning frame-
work, we need a reasonably expressive language that is capable of compact representation of

– sets of world states
– future states of the world and action of the agents
– knowledge available to individual agents
– capabilities of coalitions of agents

Describing World States The world state is usually composed of a set of variables, which can
be assigned values from finite domains. These represent for example the positions of situated
agents or the amounts of available resources. The basic sets of the states of the world can be
efficiently represented as the states of the world, where certain variable takes a certain value.
Other basic propositions about the state of the world are (partial) relations between two or more
variables of the world state. These relations are often represented implicitly by an externally
computed function, but even explicit enumeration of the tuples that belong to a relation can often
be much more efficient than explicit representation of the whole sets of world states. The basic
propositions about the world states can then be combined to more complex structures using
arbitrary logic.

The choice of the specific logic used in an application depends on the required properties, mostly
the tradeoffs between expressivity of the language and the computational complexity (decidability)
of reasoning about the language.

Reasoning about Temporal Properties The temporal relations between agents’ actions, strate-
gies, and goals achieved are a fundamental aspect of adversarial planning. We often need to
express that an agent will perform a specific action in the next time step, that an agent will even-
tually reach its goal, or that under certain conditions, the adversary will never achieve his goal.
All these properties can be expressed using temporal logics, such as CTL [19] and its extensions.
The most common basic modal operators in these logics are � “always”, ♦ “eventually”,© “in the
next step”, and U “until”.

Reasoning about Knowledge In domains with partial information, we need to distinguish be-
tween the fact that a formula φ holds in a state of the world, and the fact that an agent i knows
about it. Even in domains with full information about the state of the world, different agents can
have different knowledge about internal states (e.g. knowledge) of other agents. None of the log-
ical formalism mentioned above can express this distinction. These properties can be expressed
in epistemic logic. A very good introduction to this subfield is [20]. The author describes the prop-
erties sketched above using modal operators ∀i ∈ IKi and ∀G ⊆ IEG, CG, DG, with the intuitive
meanin of Kiφ being that “the agent i knows φ”. EGφ,CGφ,DGφ means that “everyone in group
G knows φ”, “φ is common knowledge among the agents in G”, and “φ is distributed knowledge
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among the agents in G”. These epistemic operators are then combined with the standard tempo-
ral operators creating a very expressive logic that satisfies most of our requirement. They use the
logic to proof several fundamental properties of communication protocols, such as unreachability
of common knowledge in case of unreliable communication.

This knowledge is powerful enough to express what certain groups of agents know together, but
it cannot express what individual groups of agents can achieve in the system.

Reasoning about Coalitions An extension of CTL designed to formalize capabilities of individ-
ual groups of agents in a system is called Alternating-time Temporal Logic (ATL) [21]. This logic
introduces to CTL an addition path quantifier << G >> parameterized by a subset of agents in
the system. The meaning of the expression << G >> φ is that the agents in G can cooperatively
assure that formula φ holds, whatever the remaining agents (I \ G) do. Formula φ is a temporal
formula, so the language allows expressing many important notions concerning coalition, such as
”in agents in G cooperate, all of them will eventually satisfy their goals”. ALT has recently become
very popular and it has been shown to be able to express many basic game theoretic notions such
as Nash equilibrium [22] and it has been shown to be usable for defining and automatic checking
of properties of game specifications in Game Description Language used by the General Game
Playing Competition [23].

Knowledge and Coalitions The previous two logics were successfully combined in [24], cre-
ating Alternating-time Temporal Epistemic Logic (ATEL). This logic satisfies all of our main re-
quirements and keeps model checking of formulas in the language tractable. Hence, we suggest
using this language for expressing and proving more complex (derived) properties of domains
and algorithms for adversarial planning. The only disadvantage of this language is its inability to
express more fuzzy concepts, such as that an agent knows a fact with certain probability, or that
a coalition can achieve φ with specified probability. However, probabilistic versions of ATL [25] as
well as epistemic logics [26] has been studied and can be used for to describe creating specific
aspects of the systems.

3.7 Conclusion

This chapter summarizes the conceptual view to the components and processes of planning and
decision making in complex multi-agent settings. In general, the agents in these settings can
have various interaction stances towards each other (e.g. cooperative, adversarial) and different
capabilities. In the previous project, we have formally defined the notion of interaction stance and
some of the basic kind of knowledge that describe behavior of individual agents. Here, we have
refined the knowledge concepts of the individual agents and adapted the previously developed
3bA model to be applicable in adversarial setting.
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Chapter 4

Agent Subset Adversarial Search

4.1 Introduction

One of the key factors prohibiting the application of the search-based methods in large scale multi-
agent setting is the consideration of all possible interactions of all the agents involved in a game
situation. Surely, the inter-agent interactions in game situations cannot be neglected, because
they substantially change the development of the game. On the other hand, in many real-world
situations, each agent interacts only with a small number of other agents. Each agent has its
own specialization and its capabilities cannot be beneficial or harmful for objectives of all of other
agents.

We have therefore developed a method that applies this insight to make search-based game-
playing algorithms more efficient with a relatively small decrease of quality of produced strategies.
The main idea of the presented approach is to substitute one global search in the search space
of all agents with multiple sub-searches in the search spaces of small overlapping subsets of
the agents, and use the information obtained through the sub-searches to synthesize a global
solution. We term this method Agent Subset Adversarial Search (ASAS).

We show that if the size of the subsets is limited, the ASAS method can be polynomial in the
number of agents involved. The ASAS method is generic and it can be used with multiple known
search-based game playing algorithms, such as maxn [27], or its extensions (e.g., [28], [29]).

The major contribution of the ASAS method is a substantial improvement of the search efficiency
with a relatively small decrease of quality of produced plans without requiring any background
knowledge about the domain. The method is suitable for domains where the most of significant
changes in the state of the game need only relatively small number of agents to interact. These
changes can be either of positive or negative nature for an agent, i.e., some agents want to
achieve the change which other agents want to prevent. In the ASAS method, the agent subsets
do not have to be defined explicitly. Instead, the “correct subsets” leading to high-quality plans
emerge from the sub-searches for many different subsets.

In this chapter we firstly introduce preliminaries in Section 4.2 following by presentation of the
ASAS method in Section 4.3. Section 4.4 presents an experimental evaluation of the ASAS
method. Section 4.5 reviews the related work and Section 4.6 concludes the chapter and outlines
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possible future directions of following research.

4.2 Preliminaries

The problem tackled in this project is to determine a suitable course of actions (a plan) for an agent
in complex multi-agent environments that can be modeled as n-player non-zero-sum games. We
consider games, in which all agents are self-interested, i.e., each agent maximizes only its own
utility. We focus on the environments whose complexity prohibits the application of classical game-
playing algorithms based on the exhaustive state space search because of its prohibiting size.

In the following, we use the game domain definition from Chapter 3 with one addition. For sim-
plicity, we assume that the agents’ desires can be represented by a real valued utility function and
we add to the game definition:

– U = (u1, . . . , un) denotes the global utility function, where ui : W 7→ R is a real-valued utility
function for player i on world statesW.

We also assume full observability of the game domain; hence we do not use the set of agents’
observations O in this chapter of the report.

We already mentioned that the main idea of the ASAS method is to substitute the global search
by multiple sub-searches in small agent subsets. We employ the notion of plan independence in
splitting the whole set of agents into subsets and, later, for merging the partial solutions into a
global solution. For simplicity, assume that we have two agents 1 and 2. Let P1 = {p1, p2, . . . , pl}
denote the set of some plans of the first agent, where pi = (ai1, . . . , a

i
d), i = 1, . . . , l are plans

composed of actions of the first agent. For such plans of agent 1, we define the sets of variables
occurring in the plans preconditions and effects as follows:

pre(pi) =

d⋃

j=1

pre(aij) , pre(1) =

l⋃

i=1

pre(pi) (4.1)

eff(pi) =

d⋃

j=1

eff(aij) , eff(1) =
l⋃

i=1

eff(pi) (4.2)

For the second agent, P2, pre(2) and eff(2) can be defined in a similar fashion.

Definition 8 We say that sets of plans P1 and P2 of agents 1 and 2 are independent iff

(pre(1) ∪ eff(1)) ∩ eff(2) = ∅ & (pre(2) ∪ eff(2)) ∩ eff(1) = ∅

Agents’ plan independence, as illustrated in Figure 4.1, expresses that the plans of agents 1 and
2 cannot interfere. Clearly, if plans of agents 1 and 2 are not independent, the success and the
utility of execution of such plans of one agent can depend on the plan that is selected by the other
agent. On the other hand, if plans of agents 1 and 2 are independent and if P1 and P2 contains
all possible plans of agents 1 and 2 respectively, we can be sure, that agents 1 and 2 can never
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Figure 4.1: The general case of inclusion of the variable sets defining plan independence.

interfere. Therefore, in such a case, the search for an optimal plan for agents 1 and 2 can be
performed independently.

If more than two agents are considered, we are interested in dividing the set of agents to dis-
joint subsets, such that the plans for the agents in each subset can be computed independently
from the plans of the agents in any other subset. We use the notion of pairwise agents’ plans
independence to generalize the agent’s plan independence to agent subsets.

Definition 9 Assume an undirected graph G = (I, E), where the set of nodes corresponds to the
individual agents and the edge {i, j} is present if the plans of agents i and j are not independent.
We call G the graph of agents’ plan dependence.

If graph G is not connected, then the subsets of nodes corresponding to individual connected
components of the graph create a decomposition of the set of agents to the parts that can be
evaluated independently.

The benefits of decomposing the global game into subgames can be expressed in terms of com-
putational complexity of the search process. Let n be the number of agents in the game, b be
the number of different actions applicable by an agent in single move (branching factor), and d
be the desired look-ahead, i.e., the number of moves in the future, which we want to consider for
determining the plan. If we consider a game progressing in time with simultaneous actions of all
agents, the size of the search space is approximately

bn∗d (4.3)

If the set of all agents can be decomposed into disjoint independent subsets, such that the optimal
plan of the agent we plan for depends on plans of at most (k − 1) other agents in the game, the
complexity of planning for the agent becomes bk∗d.

The major problem of the described notion of agents’ plan independence is that in realistic envi-
ronments we almost never encounter the situation of complete agents’ plans independence. In
other words, while in a small local neighborhood of an agent the agents’ plans independence
would be a reasonable criterion for splitting agents into subsets, if a more global planning per-
spective is needed, the agents’ plans independence cannot be used directly.

4.3 ASAS: The Method

The ASAS method relies on the observation that explicit coordination of all agents in the game
is often not necessary in order to find high-quality plans that reach agents’ goals (e.g., in some
domains the agents are specialized and interact only with the agents of similar role and/or task

32



Figure 4.2: The scheme of the ASAS method using a generic search-based algorithm.

group). Therefore, the set of all agents can be decomposed into small subsets, and planning
can be performed independently for each subset. We use the term active agents for such agents
that are members of the subset for which the sub-search is currently performed. The remaining
agents, which are not in the subset, are called inactive agents (with respect to the specific sub-
search).

The ASAS method is designed to be combined with some generic search-based game playing
algorithm, such as maxn , and tries to find the optimal plan, i.e., the one that would be found
by underlying search algorithm without using the ASAS method. Figure 4.2 shows the overall
scheme of the method, which in essence consists of the following steps:

1. Subsets selection: Create a set of sub-games involving a small number (k) of active agents
in each sub-game (Section 4.3.1). These subsets of active agents do not need to be inde-
pendent and can be overlapping.

2. Sub-searches: For each sub-game use the underlying search algorithm to compute the
plans which the active agents should pursue in the sub-games. In sub-searches the problem
arises of how to reason about the game development without considering the inactive agents
(Section 4.3.2)

3. Merging: Combine the results from the sub-searches into a single global solution (Section
4.3.3)

An agent uses ASAS in the same way as the underlying adversarial search algorithm. It computes
its optimal plan centrally (on its own), without interaction with other agents, based on his model of
the game and the utility functions of all agents.

4.3.1 Subsets Selection

There are several possibilities of how to choose a set of subsets in the first step of the algorithm.
A rather simple method is to consider all possible subsets of k agents. Even such basic selection
method reduces the search complexity substantially. The reason stems from the complexity of
computing plans in all sub-games. If all possible subsets of k agents are considered, the number
of such subsets is given by the binomial coefficient. Hence, the sum of sizes of all the sub-search
spaces can be approximated (with respect to formula 4.3) as

(
n
k

)
bk∗d < (nk)bk∗d (4.4)

Note that this number is still polynomial in the number of agents in the game (n) and it form the
upper bound on complexity of the method.

Alternatively, different (more sophisticated) approaches could be used for subsets selection, in
order to decrease the number of subsets that needs to be explored. For example, the agents’
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plan dependence graph as defined in Def. 2 can be employed. Using this graph, such minimal
set of subsets of k agents can be selected, for which each clique of size k or smaller is included
in at least one of the subsets. This would be less than the number of all subsets of k agents if the
graph is not complete.

Although selecting only some of the subsets would further reduce the search space, we use all
subsets of specified size as a proof of concept in our experiments, which still allows substantial
computation time reduction.

4.3.2 Reasoning about Inactive Agents

Another key issue is what to do with the agents that are not currently active in the given sub-
search. We consider the following three options.

(1) Removing inactive agents from the environment can be used in domains where pure pres-
ence/absence of an agent does not substantially change the environment state. Such situations
may occur, e.g., in domains, where some form of locality (e.g., geographical, functional) does not
allow many agents to interact with each other even when a long look-ahead is considered. In our
domain, as in many adversarial domains, this is not the case. For example, removing a military
brigade from an unstable region would change the game completely, and plans optimal for such
situation would not make sense in the game with all agents.

(2) Using predefined heuristic behavior. Heuristic behaviors, employing background knowl-
edge of the domain, can represent tasks for inactive agents that are necessary for reasonable
consideration of the future development. Conservative heuristic behavior of inactive agents will
allow more realistic assessment of future game states during sub-searches. However, creating
heuristic behaviors manually for all agents and all situations is non-trivial and time consuming.

(3) Reusing results from the previous search: Instead of creating the heuristics manually, the
results from the previous search can be used as a heuristic in the current search. Specifically, for
every inactive agent we use its best plan resulting from ASAS for the agent in the previous exe-
cution of the algorithm (usually in the previous move) as a heuristic approximation of its behavior.
Since such plans are sequences of actions (the length corresponds to the size of the planning
look-ahead), these plans can be used as a heuristic in the search for several subsequent moves,
and such plans will most likely still be reasonable. If the past plan for some inactive agent is not
applicable at a certain time because of a major deviation from the past game state development,
the inactive agent will move randomly further on. Importantly, random moves have to be used
mostly only in the later stages of the search, hence the effect of random moves does not affect
the outcome of the sub-search for active agents too much.

For our experimental domain evaluation we follow the third option, which showed to suit best the
used domain.

4.3.3 Sub-results Merging

The purpose of merging sub-results is to select the final plan for each agent based on information
found in sub-searches. For each subset the sub-search produces:
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Input: W : current world state, I: the current set of agents, Dutil: the part of domain to compute
utility, P [I]: the set of plans to choose from for each agent

Output: an array of values of the world state (one value for each agent)
1: Compute the graph of agents’ plan dependence G
2: if G is not connected then
3: ~V = ~0
4: for Gi connected component of G do
5: Let Ii be the agents in component Gi
6: Let Di be the domain partition corresponding to Gi
7: ~V = ~V+ Merge(W |(Di ∩ pre(Ii)),Ii,Di, P [Ii])
8: end for
9: return ~V

10: end if
11: for agent i in I do
12: Let Firsti be the set of all actions that are first at some plan from P [i]
13: end for
14: for ~a = (a1, a2, . . . , an) ∈ Xni=1 Firsti do
15: curW = τ(W,~a)
16: for agent i in I do
17: P ′[i] = {p ∈ P [i] : p starts with ai}
18: Remove first action from each plan in P ′[i]
19: end for
20: ActionV alues[~a] = Merge(curW, I,Dutil, P

′[I])
21: end for
22: return ValueBackup(ActionV alues)

Figure 4.3: Merge(W , I, Dutil, P [I]) – the main procedure plan merging algorithm.

– an optimal plan for each agent in the sub-game
– a resulting utility achievable in the sub-game if all active agents apply the plans optimal for

the subset
– other characteristics of the resulting plans, such as their resource requirements, precondi-

tions, and effects

If the plans generated in some sub-game are used in the complete game, conflicts between plans
originating from different sub-games may occur, and the utility of the resulting game may not be
the same as in the sub-game. We developed two merging techniques that address this issue.
The search-based plan selection achieves better performance, but re-introduces the exponential
dependence of computational complexity on the number of agents. Alternatively, the rule-based
plans selection approach guarantees the polynomial time complexity, but the quality of the se-
lected plans in lower.

Search-based plan selection

In essence, the search-based plan selection tries to find the best possible combination of plans
(1 plan for each agent) by exploring all combinations of agents’ plans that were found as the
best plan in at least one of the sub-searches. The combinations are explored by searching the
search space (game tree) that is generated only by the plans of each agent produced by the sub-
searches. The algorithm realized by a recursive method showed as the pseudocode in Figure 4.3,
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consists of two parts:

1. the split part (lines 1–10) partitions the set of agents and their corresponding plans found in
sub-searches into independent agent sets (Defs. 1 and 2), for which the best combination of
plans can be found separately,

2. the selection part (lines 11–22) considers every partition from the split part and explores all
plan combinations for the agents of the partition by simulating the plans simultaneously in the
shared environment and by computing the utility of every such combination of plans.

The combination of plans with optimal utility values in the sense of the underlying search method
equilibrium is returned.

While we discussed the fact that agents’ plan independence properties are very unlikely to hold
globally for all possible agents’ plans, these properties are very useful in the split part of the
Merge procedure. In particular, the set of agents for which we evaluate different combinations of
plans, can be split in case their remaining actions in plans are independent (in terms of Def. 2)
and evaluated separately. Note, that the split part is an optimization of the overall search-based
plan selection method that can be omitted.

In order to find the best combination of plans in the selection part of the procedure, one of its plans
is selected for each agent, and the first actions of such selected plans are executed simultaneously
(lines 14, 15). Since some of the plans of each agent can have a shared prefix (i.e., start with
the same sequence of actions), as an optimization, the procedure always considers plans with
shared action prefixes instead of considering only single plans at a time (lines 17, 18). The Merge
procedure recursively traverses the tree structure formed by the shared prefixes in depth-first
manner. With each descent in the tree, less and less candidate plans share the same prefix with
the already executed actions, i.e., the sets P [i], and the variable sets pre(i) and eff(i) are getting
smaller. Subsequently, in each recursive descent of the procedure the split part is more likely to
produce an independent partitioning of the agents into smaller subsets.

In the recursive call on line 7, the term W |S means the world state W restricted to the variables in
set S. The vector ~V represents utility values of optimal plans for each agent (not just agents in Ii),
and the plus sign means vector addition. Function τ on line 15 is the state transition function. The
ValueBackup function computes the value of the best combination of agents’ possible actions
(computed in the leaf nodes of the tree traversal), in the same way as the underlying search
algorithm of ASAS. The utility values for each action are stored in the ActionV alues vector. For
the sake of simplicity, the presented algorithm does not include the structures and procedures to
store the plans that correspond to the selected solution.

In order to use the split, we assume that the utility functions of agents are decomposable with
respect to the domain D. It means that the value of each utility function u on D can be obtained
by computing some derived functions on arbitrary partitions of the domain and then combined at
the end, i.e., ∀D1, D2 s.t. D1 ∪D2 = D, D1 ∩D2 = ∅ ∃u1 : D̄1 → R, u2 : D̄2 → R (u = u1 + u2).

The decomposability property of the utility functions is needed in order to allow the utility of the
plans to be computed on subdomains of D in the split part. Specifically, for independent plans,
each agent can evaluate its options independently just on the subset of the domain that is relevant
for him (pre(i) ∪ eff(i)). However, if we need to know the utility of performing the plans, working
with just the sets pre and eff might not be sufficient. The utility function must be computed on the
complete domain. That is why the agents split the domain to two disjoint parts D1, D2, so that
D1 ∪ D2 = D, such that eff(1) ⊆ D1 and eff(2) ⊆ D2 (see Figure 4.1). The agent 1 evaluates
its plans on domain D1 ∪ pre(1) and computes the utility only on D1. The agent 2 computes the
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utility on D2 in a similar way. The final utility is then just sum of the utilities computed by individual
agents thanks to the assumption of decomposable utility.

With respect to the complexity of the Merge procedure, in the phase of sub-searches, each agent
is active in

(
n
k−1
)

searches. In the worst case, each sub-search can produce a new plan for
the agent, i.e., the final search tree would contain at most

(
n
k−1
)n leaves. Although this number

does not depend on the look-ahead factor (see formula (4.3)), it re-introduces the exponential
dependence on the number of agents. However, our experiments show that for an agent the
same plan often results from multiple sub-searches, which reduces the size of the search space.

Rule-based plan selection

In order to avoid the possibly exponential time complexity of the search-base plan selection, the
rule-based plan selection process introduces simple rules for selecting final plan for each agent
out of all best plans found in corresponding sub-searches. The rules can employ various domain-
independent factors of plans in order to select a good one, such as:

– Utility: the maximal absolute value of the plan utility, or the maximal average utility of the
plan (one plan can be found in several sub-searches with different utilities)

– Occurrences: the number of occurrences within the candidate plans, i.e., the plan that was
returned from most sub-searches for an agent will be selected.

Such rules can be determined automatically, e.g., by using machine learning algorithms on a train-
ing set created by running the full search algorithm as well as the sub-searches for all the agent
subsets on a set of scenarios. However, our focus in this project is not on the learning methods,
therefore we have constructed several rules combining both of these ideas manually and used
them in our experimental evaluation to assess the feasibility of this approach (see Section 4.4).

4.4 Experimental Evaluation

The ASAS method can be applied on top of various search algorithms. For the experimental
evaluation, we use our goal-based game-tree search (GB-GTS) [29] developed in the previous
project as the underlying search method.

The results for the rule-based plan selection method presented in this section were obtained by
the heuristic rule that chooses the plan that is maximal in lexicographical order given firstly by the
average utility value of the plan and secondly by the number of occurrences of the plan within
the set of all candidate plans. This rule was the most successful rule from all the fixed rules we
considered.

4.4.1 Experimental Scenario

For the experimental evaluation we used a scenario in the Tsunami Recovery Game. Figure 4.4
depicts the schema with all important details. The scenario includes 6 cities, 2 of which can be
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Figure 4.4: One of the sample situations from the experimental scenario. Lines represent the edges in the
graph, agents are represented by appropriate symbols in the vertex, and cities are shown as a group of
buildings in the vertex.
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controlled by the government as well as the separatist player (City 1 and City 2). At the beginning
of the scenario, both of these cities are under the control of the government player. Government
headquarters (HQ) that help assuring government’s control over a city are build only in City 1 and
the food reserves in this city are very small.

There are 9 units operating in this scenario – two food trucks delivering food to City 1 from two
farms (Cities 3 and 6), a truck transporting explosives from City 4 to City 5 (the explosives are
used to mine stone in City 5), a truck transporting stones from City 5 to City 2 and City 1 if they do
not contain HQ (in order to build it). Next units are: an engineer that uses the stone to build HQs,
two police cars that can escort trucks and gain control in cities, and finally two gangsters that can
either gain control for separatists in a city without HQ, destroy food in order to cause riots that lead
to the destruction of HQ in the city, or steal explosives and create a suicide bomber in their cell in
City 1. The suicide bomber is an agent that can destroy HQ by a suicide attack. There are many
possible runs of this scenario. For example the police agents have to deal with several threats
(e.g. protecting two food transports, explosives transport, and control of City 2). The gangster
agents try to gain control of the cities they do not control and the humanitarian organization team
tries to provide supplies efficiently without being robbed.

In our experiments, we compare the ASAS method with the original search method (GB-GTS
in our case) without the ASAS being applied (termed full search). We measure the complexity
(expressed as the number of explored search nodes), and optimality of the found plans. In our
basic evaluation scenario, the game is played on a graph that consists of several hundred nodes.
Thanks to the background knowledge in GB-GTS, the average branching factor of each agent is
approximately 2.5 (minimal branching factor is 1, maximal is equal to 4), and each agent has to
decide about it next course of action approximately every 5 moves.

The experiments were performed for different size of subsets k = 1, . . . , 4, different look-ahead
values d = 8, . . . , 16, and different number of agents present in the scenario n = 7, . . . , 12. The
lower bound of the look-ahead was chosen as a minimal look-ahead that produces reasonable
behavior in our scenario. The upper bounds were given by a practical limit of computational
resources, especially when comparing to the full search. In each experiment, we ran the game
on 42 situations based on the described scenario.

4.4.2 Search Reduction

We evaluate search space reduction by comparing the number of search nodes explored by the
ASAS method and by the full search. In results regarding the ASAS method, we distinguish
between the nodes evaluated in the sub-searches phase and the nodes evaluated during the
search-based plan selection. The number of nodes evaluated in the sub-searches is the same for
both plan-selection methods, however for the rule-based plan selection, this number is the final
one. For the search-based plan selection, the overall complexity equals to the sum of nodes ex-
plored in the sub-searches and the nodes explored in the plan selection search. Furthermore, the
complexity of computations performed in nodes of sub-searches might differ from computations
in plan selection search nodes. In the presented experiments, the complexity of computation of
all three kinds of nodes is the same, which allows us to compare these nodes and to depict them
in the same graph.

The search space reduction for varying look-ahead values is shown in Figure 4.5. For the ASAS
method, the bars show the overall sum of all nodes explored with the search-based plan selection
method applied, while the number of nodes evaluated only in sub-searches is highlighted by the
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Figure 4.5: The number of nodes explored by the full search compared with the ASAS method for different
sizes of agent subsets and various look-ahead values. The nodes axis is in the logarithmic scale.
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Figure 4.6: (a) The number of nodes (the axis is in logarithmic scale) explored by the full search compared
with the ASAS method for different number of agents, fixed look-ahead (16), and different size of subsets
k = 2, 3; (b) The percentage of optimal plan existence for all agents among the candidate plans resulting
from the sub-searches in ASAS for various look-ahead values; (c) The percentage of optimal plans returned
by the ASAS method for all agents for various look-ahead values.
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gray filling.

As expected, the search space size grows exponentially with the increasing look-ahead in all
cases (note that the figure scale is logarithmic). However, the number of nodes explored in sub-
searches is a rather small portion of the overall number of explored nodes. For example, for the
look-ahead 16 the full search explored 25, 429, 065 nodes, while the ASAS for subsets of size k = 3
with search-based plan selection method explored 2, 728, 847 nodes (i.e., 9.32 times less than the
full search) and the ASAS with the rule-based plan selection explored only 722, 743 nodes (i.e.,
35.19 times less than the full search).

The search space reduction for varying number of agents (i.e. units in the game scenario) is
depicted in Figure 4.6(a). In this experiment we evaluated the dependence of complexity on the
number of agents involved in the search. For the look-ahead 16 and two different sizes of subsets
(k = 2, 3) we measured the number of evaluated nodes. For the full search and the ASAS with
search-based plan selection, the number of nodes grows exponentially (the figure scale is again
logarithmic). However, the number of nodes evaluated in sub-searches (i.e., if the rule-based plan
selection was used) remains polynomial in the number of agents.

4.4.3 Accuracy: Preservation of Optimal Plans

Next, we focus on the accuracy of the ASAS method. We show that in spite of the significant
reduction of the search space, the ASAS algorithm finds the same solution as the full search in
most cases. We evaluate the accuracy by matching the plans returned by both methods for each
agent. Two plans are matching, if they are exactly the same. This criterion is stronger than just
comparing the utilities of returned plans – matching plans imply matching utilities. We use plans
matching since it captures very well the loss of quality of plans returned by the ASAS method as
compared to plans found by the original adversarial search algorithm.

First, we measured the presence rate, i.e., how often the optimal plans (the plans found by the
original full search algorithm) are present among the candidate plans found by the sub-searches.
The presence rate corresponds to the maximal possible precision of the ASAS method in case
we had an ideal plan selection strategy (i.e., the one that always selects the optimal plan from
sub-search results if it is present). However, in our case the presence rate is also influenced
by the used plan selection method, because the results of sub-searches depend on behavior of
inactive agents, which in our case are approximated by reusing the plans from previous searches
(see Section 4.3.2).

Figure 4.6(b) depicts the presence rate for varying look-ahead and different size of agent subsets
k. We emphasize the search-based plan selection method, but for a comparison we performed
the experiments with heuristic rule-based plan selection as well. With the increasing look-ahead,
the presence rate gets worse, which is due to the exponential expansion of the search space.
However, for k = 2 the presence rate is almost always more than 90%, and for higher values of
k the presence grows towards 100%. Specifically, for k = 3 the presence rate is almost always
more than 95%. The presence rate for the rule-based plan selection heuristic is slightly worse.

Next, we analyzed the overall accuracy of the ASAS method. For each agent, we compare the
plan selected by the particular selection strategy with the plan assigned to the agent by the full
search. The results depicted in Figure 4.6(c) show that for subsets size k = 3 or k = 4 and the
search-based plan selection we obtain results almost as good as the in full search. For k = 3
the accuracy is always higher than 95% for all evaluated look-ahead values. For the rule-based
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plan selection, the results are worse than search-based plan selection, however, still applicable
in real game-playing situations. For both k = 2 and k = 3 we obtained the accuracy of 64% for
the look-ahead of 16. Notice, that for k = 1, which corresponds to the approach presented in [30]
(see Section 4.5), the accuracy dropped to 54%.

The employed plans comparison is quite strict. The plans selected by the two algorithms must
be exactly the same. Such precision is often unnecessary, since in most game playing scenarios
only the first action or goal of the plan is used in every move. In the next move (or in next couple
of moves) the planning is performed again. Therefore, we are also interested in examining the
match of only the first goals of the plans returned by the full search and by the ASAS. In this
modified experiment, the results improve significantly even for the rule-based plan selection. For
k = 2 and k = 3 the first goal in the plans matched in 86.7% and 85.6% cases respectively with
the rule-based selection method.

4.5 Related Work

We focus on the environments whose complexity prohibits the application of classical game-
playing algorithms based on complete state space search. Consequently, heuristic game playing
and multi-agent planning techniques are predominately applied in these environments and as
such they are the closest competitor to the presented approach.

The heuristic techniques used in the search often utilize background knowledge to substantially
reduce the search space. Examples can be found in GO [31], where the knowledge is in a form of
a hierarchical task network, in card game of bridge [32], that uses domain-specific approach, or
in the goal-based game tree search (GB-GTS) algorithm [29], which uses procedural knowledge
in a form of higher level goals to reduce the search. These heuristics do not tackle the complex-
ity dependence on the number of agents and they are complementary to the presented ASAS
method.

The ASAS method is similar to the work of Mock [30]. Mock developed a version of game tree
search, where action choices for only one of the agents are explored at a time and all the other
agents behave heuristically. Our approach extends this idea and conducts searchers for subsets
of more than one agent. Consequently, in our method a more complex sub-result merging strategy
needs to be applied, but quality of the produced solutions is better.

In the field of game theory, the graphical games (GG) [33] consider situations where each player
interacts only with a small subset of all players in the game (termed agent’s neighborhood). The
algorithms for finding the optimal strategies for graphical games can run with time complexity ex-
ponential in the size of the largest neighborhood in the game [34]. However, as we are interested
in the multi-stage games, the algorithms for solving GG cannot be applied because they need a
fixed structure of agents’ interactions, which is unknown in advance in our case as it can possibly
change with respect to different game states.

In [35] authors present an approach to multi-agent planning (MAP) that utilizes limited interactions
among agents. It is based on a combination of single-agent planning and constraint satisfaction
programming. It creates a multi-agent plan for fully cooperative agents with time complexity expo-
nential in two sparsity measures, but not the number of agents in the environment. However, as
other approaches based on MAP, the work considers only cooperative agents that work together
to reach a common goal, which makes the combination of the single-agent plans possible using
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conflict-resolving. In adversarial situations, each agent seeks and exploits conflicts in order to get
more in specific situations.

The limitation of the MAP is partially solved by Ephrati et. al. in [36], serving as an inspiration for
the sub-result merging part of our method. The approach optimizes the utility and considers also
the case of agents with conflicting preferences. The solution assumes that the agents agree on
certain fairness criterion (e.g., egalitarian or social welfare) and that they fully cooperate to find a
global common plan that optimizes it. Such approach is not usable in real-world conflict situations
(e.g., military operations), because the parties involved in the conflict would not fully cooperate
and they would never trust each other sufficiently.

4.6 Conclusions

Interactions in multi-agent adversarial domains are crucial and cannot be simply neglected while
creating plans for an agent. However in many cases, each agent interacts only with a small
subset of other agents. Based on this observation, we have developed a method, termed agent
subset adversarial search (ASAS), which decomposes the global adversarial search into multiple
smaller overlapping sub-searches. In each sub-search only actions of a subset of all agents are
searched, while the remaining agents behave heuristically based on the result from the search in
the previous time-step. We proposed two different merging methods for construction of the final
plan for each agent based on results from the sub-searches. The rule-based selection method,
which reduces the computational complexity of the overall algorithm to polynomial in the number
of agents, and the search-based method, for which the dependence on the number of the agents
is still exponential, but the reduction of the search space is still significant.

The experimental evaluation proved that in spite of the reduced effort, ASAS achieves accuracy
similar to the underlying full search. The subsets of three agents turned out to be a reasonable
compromise between computational complexity and accuracy for our domain. With k = 3, the
more precise search-based method produced the exact same plan as the full search in more than
90% and the faster rule-based method in 64% of cases. However, if we compare only the first
actions produces by the searches (corresponding to the typical use of a game-playing algorithm),
even the rule-based selection method agrees with the full search in over 85% of cases.

Future research will include a more thorough theoretical analysis of which domain properties
underlie the applicability of the approach. We also plan to investigate different strategies for
selecting the correct agent subsets, which would further reduce the search space. Specifically,
we plan to investigate a closer integration of the principle of agents’ plans independence into
the construction of subsets, allowing different sizes of subsets, or possibly modifying the subsets
during the sub-search process.
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Chapter 5

Cooperation in Adversarial Search
with Confidentiality

Cooperation of self interested agents in complex domains simulating real-world applications is a
challenging problem in the multi-agent systems research. Agents in adversarial domains have to
reason not only about their own goals, but also about other agents according to the opponents’
models (OMs). If the agents use adversarial search for selecting their actions, each agent creates
its private game tree that reflects the expectations of the future development of the game. In this
tree, it selects a move that gains the maximal utility value for the searching agent according to
its expectations. The outcomes of the adversarial search algorithms are often too pessimistic,
because they do not assume the possibility of mutually beneficial coordination among the agents.
If this coordination is possible, better solutions can be found (i.e. solutions for which each agent
can gain a higher utility value).

We tackle this problem using the concept of pre-play communication leading to the cooperation of
the agents. After running a search algorithm, an agent can use negotiation about future courses
of actions with other agents to improve its anticipated utility value. The subject of negotiation can
either be committing to a strategy in the complete agent’s game tree, or partial strategies applied
only in smaller parts of the tree (we further refer to them as sub-games or sub-trees). In the first
case the agent fully reveals its intentions, which is often undesirable. Hence we follow the latter
case and assume that strategies in the smaller sub-games would be used as a subject of the
negotiation.

In this chapter we tackle two main goals: (1) If such a pre-play communication (i.e. a negotiation
prior to actual playing) is allowed among the adversarial-search-based (self-interested) agents,
what is the maximal possible improvement of the utility value that an agent can gain by negotiation
about strategies in the sub-games with the other agents? Furthermore, in what way this value
depends on parameters of the game, such as number of agents present, number of possible
actions, or correlation of agents’ utility functions. (2) What algorithm can be used to find the
strategy by negotiations about sub-games if agents do not want to negotiate their complete plans?

The answer to the first question describes the negotiation-space of the utility values in synthetic
games capturing the basic characteristic of the target domains. It shows how the space depends
on the general characteristics of the games proving the usefulness of the concept. The answer to
the second question is an algorithm that constitutes a solution for the problem of cooperation of
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self-interested agents with confidential plans and without a third-party mediator.

In the next section we analyze the connection between basic game characteristics and the nego-
tiation space in target domains. We do not limit our analysis on the humanitarian relief operation
domain, but we aim onto all domains with similar characteristics (further termed as the target
domains; including games based on real world scenarios, models of societies, economies, or
war-games). We describe the characteristics of the extensive games that can model these do-
mains, together with an example of a situation where the pre-play communication can lead to
the improvement of the utility value. We follow with the formal definitions of the game and the
utility improvement. We present an algorithm that calculates the maximal utility improvement for
the searching agent together with its experimental evaluation. Next section is devoted to the de-
scription of a novel negotiation-based algorithm together with the experimental evaluation and
application of this algorithm in our Tsunami Recovery Game. In the last sections of this chapter
we present related work and give our concluding remarks.

5.1 Problem Definition

We are interested in domains modeled as n-player non-zero-sum extensive-form games with per-
fect information about the states of the game and number of agents and their actions. We assume
that each agent reasons about other agents using opponent models (OMs) in the form of their util-
ity functions. Moreover, we assume that players make their actions in turns with fixed order1.

Finally, we assume in the presented approach that the players’ utility functions have a specific
structure. In the games of our interest we expect that players can usually slightly improve or
slightly worsen their current situation with most of their actions, but significantly less actions lead
to a radical change of the utility value. Therefore, the values of the child nodes of any node form
a normal distribution with center in utility value that corresponds to the current situation. Note,
that although this assumption holds for the Tsunami Recovery Game, it does not hold for classic
games such as chess or checkers.

5.2 Usability of Pre-play Communication in Extensive Games

Solution of the extensive-form game that meets assumptions defined in the previous section can
be obtained by a classical game-playing algorithm maxn – the n-player modification of classical
minimax algorithm described in [38]. We understand the solution to be a set of strategies (se-
quences of actions for all players) together with the value of the game state after applying all
the actions. Result returned by the maxn algorithm is in the subgame perfect Nash equilibrium.
This, however, is not always optimal in the sense that there can exist a combination of actions
that would result in higher utility values for all players. To reach a better value than maxn value
concept of a different equilibrium has to be used. For example the correlated equilibrium2 can

1In general, the game could have simultaneous moves, but this assumption still holds if the delayed execution as
defined in [37] is applied. Also, the assumption that the order needs to be fixed can be relaxed in a way that the order can
differ for each of players’ game tree.

2Correlated equilibrium is defined in [39] as a generalization of the Nash equilibrium – the scenario includes some
random variable (external event, or mediator, which can be replaced by using private pairwise message exchanges as
mentioned in [40]). Furthermore, the variable has a commonly-known probability distribution and a private signal to each
player about the instantiation of the random variable, which can be correlated with some of player’s strategies – hence
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Figure 5.1: An example of the maxn algorithm. Utility values in the leafs are tuples of two elements, where
Agent 1 maximizes the first element and Agent 2 the second one. The maxn values next to the nodes A, B,
and C show calculated maxn value. The set impr corresponds to the set of improvements calculated by the
algorithm in Figure 5.3

be reached using a pre-play communication between agents and result in higher utility values for
all players – we can say it improves the value of the game in comparison to maxn value. The
example of such an improvement is depicted in Figure 5.1. The maxn value of the game (the
value in the root A coming from node F ) is inferior for both agents compared to strategy leading
to the leaf D (utility value (0;−2) vs. (1;−1)), which can be found using a pre-play communication
between agents (e.g., in form of negotiation).

Using a pre-play communication in general does not solve the issue of trust – i.e. the agents can
make false promises. Therefore we further assume that agents would execute the strategy that
it was agreed upon in negotiation (we address this issue more in detail in the last section of this
chapter).

5.2.1 Definitions

Game

Based on the definition of extensive games presented in [39], we define the turn-taking n-player
non-zero-sum game in extensive form as a tuple G = (I,A,H,L, r, ρ, σ, π, u), where:

– I is a set of n players indexed i = 1 . . . n
– A is set a of actions, A =

⋃
i∈I Ai, where Ai is a set of actions an agent i ∈ I can perform

– H is a set of non-terminal nodes in the game
– L is a set of terminal nodes (leafs)
– ρ : H 7→ I is the player function which assings to each non-terminal node a player i ∈ I
– σ : H×Ai 7→ H ∪ L is the transition function realizing one move of agent i in the game
– π is a permutation on I representing the order of agents assigned to nodes on the path from

the root of the tree towards the leafs. This order is repeated until leafs are reached.
– −→u = (u1, . . . , un) is global utility, where ui : L 7→ R is a real-valued utility function for player i

on leafs L
�

can be interpreted as a recommendation for the player. Now assuming that all players follow their recommendation, the
equilibrium condition states that no player must have the incentive to deviate from it.
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Figure 5.2: Visualization of the negotiation space – the bold solid branches represent the solution obtained
by an adversarial algorithm (e.g. maxn), while the dashed branches represent those possible solutions that
gain higher utility value for the searching player hence creating that way a space for negotiations with other
agents in order to improve the value of the game.

In the following description, we talk about a single game G and we omit some indexing for sake of
clarity. Furthermore, we use a notation, where:

– r ∈ H is the root of the game tree;
– τ(h) = {j ∈ H ∪ L; (∃a ∈ Aρ(h) : j = σ(h, a))} is the set of the child nodes of a non-terminal

node h ∈ H
– τ can be expanded for a set τ(H) =

⋃
h∈H τ(h) where H ⊆ H.

– d ∈ N is the depth of the tree calculated as the number of the non-terminal nodes on the path
from the root to any leaf divided by n: τ(τ(. . . τ︸ ︷︷ ︸

d·n

(r)) . . .) = L

Utility Improvement

We continue by presenting the algorithm for calculation of maximal utility improvement for an
agent. We have shown the idea of maxn algorithm in Figure 5.1: for each node h ∈ H a maxn

value −→v maxn ∈ Rn is calculated, and it corresponds to maxn value of the child node, for which
the vmaxnρ(h) is maximal. For leaf l ∈ L, −→v maxn = −→u (l). The maxn value −→v maxn of the root of the
tree represent the maxn value of the game, together with the maxn solution of the game which is
the path from the root to the leaf with utility value equal to −→v maxn.

The algorithm for the utility improvement calculation is inspired by the soft-maxn algorithm de-
scribed in [41] – a modification of the maxn algorithm. The soft-maxn value of the node h ∈ H is
a set of utility values−→v sfmaxn ∈ Rn. The idea is, that in case the maximal value is not strict, all util-
ity values with maximal ρ(h)-th index are stored. The main idea is depicted in Figure 5.2 – besides
the maxn value and solution (the red bold solid path) the player stores also other branches that
form the negotiation space and that could bring him/her possibly better results (the blue dashed
branches).
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Input: h ∈ H current node; i ∈ I player performing the search
Output: (−→v maxn, V impr) is a tuple, where −→v maxn is a maxn utility value of the game, and V impr

is a set of utility values containing possible improvements.
1: −→v maxn ← (−∞, . . . ,−∞)
2: V impr ← ∅
3: if h ∈ L then
4: return (u(h), ∅)
5: end if
6: for c ∈ τ(h) do
7: (v′, V ′)←imprMaxN(c, i)
8: if vmaxnρ(h) < v′ρ(h) then
9: −→v maxn ← v′

10: end if
11: V impr ← V impr ∪ V ′ ∪ {v′}
12: end for
13: if ρ(h) = i then
14: for v′ ∈ V impr do
15: if vmaxni > v′i then
16: V impr ← V imrp \ v′
17: end if
18: end for
19: end if
20: return (−→v maxn, V impr)

Figure 5.3: imprMaxN(c, i) – algorithm for calculation of the impr-maxn value of the game.

In our algorithm, shown in Figure 5.3, we calculate a value we call impr-maxn. For each node
h ∈ H the impr-maxn value is a tuple (−→v maxn, V impr), where −→v maxn is the maxn value of the
node (set in line 9), and V impr is a set of utility values of other child nodes (line 11). For the
nodes that are assigned to the agent i that runs the algorithm, we remove from the set V impr

those values, that are worse for this agent than the maxn value (lines 13-19). This means, that we
build a negotiation space in a form of sub-tree of the game (see Figure 5.2). Any of the possibly
negotiable solutions (i.e. any of the blue dashed branches in the figure) improves the utility value
of the searching player i.

After agent i calculates the impr-maxn = (−→v maxn, V impr) value of the game tree using algorithm
in Figure 5.3, we say that there is an improvement possible in the game if there is an improvement
option, with which no self-interested agent has an incentive to disagree. I.e.,

∃−→v ′ ∈ V impr,∀j ∈ I : vmaxnj ≤ v′j (5.1)

LetM be a set of all such utility values for which formula 5.1 holds, and

vimpr max = arg max
v′∈M

v′i

be the improvement with the maximal value for agent i. Using this maximal value from the set
M we can define the amount of the utility improvement, which answers the first question of this
chapter. We define this amount as the rate:

Impr =
vmaxni − vimpr maxi

2 · 1.96 · w
(5.2)
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Figure 5.4: The results of the dependence of the improvement presence (the left figure) and the amount
of the improvement (the right figure) on the depth (the x-axis). The legend: P2 represents games with 2
agents, P3 represents games with 3 agents; value of BF represents the branching factors for the agents in
fixed order (each digit for one agent).

where w is a standard deviation of the probability distribution of all utility values in the leafs. We
normalize the improvement of utility difference to the width of the interval that contains 95% of all
utility values in leafs. The normalization is transforming the amount of utility value difference from
absolute to relative improvement. The reason for this is that the absolute difference is sensitive
to actual utility values, which are in general not very informative. For example, we can multiply
all the utility values by 10, it does not change the problem anyhow. However, the value of the
improvement without the normalization would also rise by the factor of 10. On the other hand,
fixed normalization to the interval that includes all the utility values would be easily deformed
small number of strategies with extremely high of extremely low payoffs.

5.2.2 Experimental Analysis

In order to practically evaluate the amount of maximal improvement, we performed a set of exper-
iments on synthetic games. We use extensive games created with respect to the definition for 2
or 3 players. The searching agent is the first one (i = 1), and we use the fixed order of agents
where the π is the identity. We use varying branching factors (number of actions by agents) from
the interval 2-3, and the depth d = 1, . . . , 6. The utility values in leafs were generated with respect
to the observation presented in the problem description. For a d = 1 game we set a value of the
game for the root of the tree and generate the utility values using normal distribution centered in
this value. For arbitrary higher depth, we use this principle repeatedly – in the root we generate
new centers for the non-terminal nodes representing the game states after all agents performed
one action – until we reach the leafs.

For each setting of the parameters we created a set of 2000 variants (with different values on the
leafs of the tree). We are investigating two aspects: firstly, we want to know how often there is an
utility improvement possible in the games (i.e. the number of the games where V impr 6= ∅ divided
by the number of all games; we refer to this aspect as the improvement presence). Secondly, we
are interested in the amount of the utility improvement Impr as defined in formula 5.2.

In the first experiment setting, we have analyzed the dependence of these two aspects on the
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depth of the game tree, the number of the agents involved in the game and the branching factors
(BFs) of the agents. The results depicted in Figure 5.4 show that the improvement presence
increases with the depth of the tree, while the maximal value of the utility improvement is slightly
decreasing. Both of the results are expected: in the first case, there is an increasing opportunity
for the occurrence of the situations similar to the one visualized in Figure 5.1 with increasing size
of the game tree. For the second case, we argue that the game tree has wider interval of all utility
values in the leafs, hence the improvement Impr is slowly decreasing in spite of the fact that there
is the higher presence of improvements.

Imprecise Opponent Models

In the previous experiment setting, we assumed that each agent posses a precise models of the
opponents. Since this condition is usually not fulfilled in real scenarios, we analyzed how varying
levels of noise in the opponent models affect the presence and the amount of the improvement.
We simulate the noise by adding a random variable with the normal distribution, with center in
zero, and with various standard deviations to the utility values in the leafs that correspond to the
opponent(s). The results show that adding the noise has only a minor effect on both the monitored
aspects – there is a small decrease of the improvement presence and the improvement amount
with the increasing noise, but the differences were not significant.

Utility Correlation

In the next experiment setting, we have analyzed the impact of the correlation of utilities of the
players to the monitored aspects. We use the pairwise correlation with the searching agent i – i.e.
in 3-agents scenario we analyzed the impact by correlating the utility functions of the first and the
second agent, and of the first and the third agent.

The results of the experiment are visualized in Figure 5.5. Because of the small impact of the
varying noise in the opponent models, we show the results only for the precise opponent models.
The results show an interesting outcome. The negative correlation between the agents increases
the improvement presence in the games. For the value of the maximal improvement, the results
are as expected – the negative correlation directly negatively affects the amount of the utility
improvement, while in case of the positive correlation, there is not much space left for the utility
improvement as the agents are driven by the utility to the “implicit cooperation”.

5.3 Sub-game Negotiations in Game-Trees

The previous section described the negotiation space for the utility improvement. Now, we pro-
pose a simple negotiation-based algorithm that utilizes the results from the algorithm impr-maxn

in Figure 5.3.

Before we describe the algorithm, we need make several notation remarks. We work with a game
G based on our definition, and i again denotes the agent that executes the search. Now:

– γ : H ∪ L 7→ H ∪ ∅ is a function that for each node returns its parent
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Figure 5.5: The results of the dependence of the improvement presence (the left figure) and the amount
of the improvement (the right figure) on the correlation of agents’ utility functions (the x-axis). The legend:
P2 represents games with 2 agents, P3 represents games with 3 agents; in P3, the value C represents the
utility correlation between the first and the third agent; the correlation between the first and the second agent
is varying at the x-axis.

γ(h) = {h′ ∈ H : (∃a ∈ Aρ(h′)(σ(h′, a) = h))}
– ϕ : H 7→ N0 is a function that returns the layer of the node h ∈ H in the game tree. The layer

definition is similar to the depth – it is the floor of the number of non-terminal nodes on the
path from the root to the node h divided by n

– Gh is the sub-game of the game G for some h ∈ H, where h is the root of the sub-tree Gh
– impr-maxn(h) denotes the impr-maxn value calculated for the node h ∈ H using the algorithm

in Figure 5.3

5.3.1 Sub-game Negotiation-based Algorithm

The algorithm consists of two main stages: (1) it selects the sub-games in the game G, and then
(2) for each of the sub-game Gh executes the negotiation protocol with the other agents.

The purpose of this algorithm is a proof of concept, hence both of the stages are designed in
a straightforward way: (1) We use the sub-games of depth dGh

equal to 1, as the roots of the
sub-trees we select the nodes h ∈ H for which π(ρ(h)) = 1 (i.e., the nodes at the top of each layer
in the game tree G). (2) We use a simple negotiation protocol, where the negotiation proceeds
only between two agents. Moreover, in the negotiation protocol the searching agent i is proposing
a strategy for a sub-game (i.e. a strategy for itself, and a strategy for the receiving agent), and the
second agent j only replies accepted in case the proposing solution is improving agent’s j utility
and it commits to perform the action, or not-accepted if not.

Note, that the sub-games with d = 1 can have their leafs identical with non-terminal nodes of the
game G. When the agents are negotiating about strategies, the utility values are taken from the
−→v maxn values calculated for the non-terminal nodes. The order of the sub-games Gh used in the
negotiation protocol is given by the decreasing value ϕ(h) of the node representing the root. This
way, when the strategies in a sub-game are considered, for all sub-games in greater depth the
maximal utility value is known (either original maxn value, or one of improving utilities that has
already been agreed upon).
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Input: i ∈ I player performing a search; j ∈ I responding agent; Rs set of roots of all sub-trees;
d depth of the game G; dmin limitation for negotiations

Output: vneg: utility value reached by negotiation for this game
1: for k = d, . . . , dmin do
2: for rs ∈ Rs : ϕ(rs) = k do
3: V remove ← ∅
4: (−→v maxn, V impr)← impr-maxn(rs)
5: sort V Impr by decreasing value at i-th index
6: while V Impr 6= ∅ do
7: −→v prop ←removeFirstUtility(V Impr)
8: accepted←propose(j, −→v prop)
9: if accepted then

10: V remove ← V remove ∪ V impr
11: h′ = rs
12: repeat
13: (

−→
v′ , V ′)← impr -maxn(h′)

14: if vpropρ(h′) > v′ρ(h′) then

15:
−→
v′ ← −→v prop

16: end if
17: V ′ ← V ′ \ V remove

18: impr -maxn(h′)← (
−→
v′ , V ′)

19: h′ ← γ(h′)
20: until h′ 6= ∅
21: break while loop
22: end if
23: V remove ← V remove ∪ −→v prop
24: end while
25: end for
26: end for
27: return −→v maxn for r

Figure 5.6: The negotiation-based algorithm for improving the utility value of the game by the sub-games
negotiation.

The negotiation-based algorithm is shown in Figure 5.6. As we described, it traverses through
the root nodes of the sub-games from the bottom of the tree (lines 1-2), and for each sub-game
it initiates the negotiation protocol about a proposition (line 8). If the proposition is accepted,
the impr-maxn value is updated along the path from the node rs to the root r of the game G
(line 10-21). If the negotiated utility value is better for the agent assigned to a node on the path
compared to the already existing maxn solution, the values are updated (lines 13-16). Also, we
need to remove the utility values that agents had not agreed upon (line 23), or would not be further
negotiated (line 10) from all the nodes along the path (line 17).

The choice of the value dmin is reflecting the confidentiality of agent’s plans. If set to higher values,
the agents would not negotiate in the upper parts of the tree. This way, even though agents could
agree upon some solutions in the greater depth of the game tree, they cannot be sure, whether
these nodes would actually be reached in the future development of the game (they can only
expect the result at the top of the game tree according to their opponent models).
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Figure 5.7: The results of the dependence of the improvement presence (the left figure) and the amount
of the improvement (the right figure) on the minimal depth for negotiation (the x-axis). The legend: P2
represents games with 2 agents, the value C represents the correlation between their utility functions.

5.3.2 Experimental Analysis

We have practically evaluated the presented negotiation-based algorithm on the same games as
in the experiments from the previous section. We investigated the improvement presence – the
rate of the games where the negotiation-base algorithm was able to improve the value of the
game to the number of all games – and the amount of the improvement – the value returned by
the negotiation-based algorithm.

The results depicted in Figure 5.7 visualize the situation in the games with 2 agents and a fixed
depth of the game (d = 4). They show that even if we limit dmin and allow only the sub-games at
the bottom of the tree to be negotiated about, the overall value of the game can still be improved.

5.4 Experiments on Tsunami Recovery Game

We have experimentally evaluated the sub-game negotiation-based algorithm in a scenario of
the Tsunami Recovery Game. As described in Section 2.2.2, we added a new separatist player
into the scenario. The two separatist players have similar utility value (both wants to destroy
Government HQs), however, each of them can gain the control in cities for himself.

Thanks to this modification the separatist players can cooperate on some activities (e.g. destroy-
ing the food supplies from food trucks), but can also compete against each other (e.g. when trying
to gain control in a city by force). In Figure 5.8 there is a situation depicted in which each of the
separatist player has one gangster unit that can either: (1) destroy the food from the food truck,
or (2) steal the explosives from the explosives truck, or (3) gain the control in City 2. The situation
is depicted in Figure 5.9. We can see that when a variant of the maxn algorithm is used (which
GB-GTS/ASAS is) the selected strategies are Ensure Presence Goal in City 2 for both separatist
player resulting in utility value (−1.0;−1.0) for the separatists because they cancel each other out
and no one gain the control in the city. However, if both of the gangster units would select the
destroying the food from the Food Truck 1, they would gain utility values (2.0; 2.0). Note that the
presence of negotiation is mandatory, as when the first separatist (GNG1) chooses to destroy the
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Figure 5.8: A example situation from the scenario of Tsunami Recovery Game, where each of the gangster
units that can either: (1) destroy the food from the food truck, or (2) steal the explosives from the explosives
truck, or (3) gain the control in City 2.

food, the maximal variant for the second separatist (GNG2) is to select Ensure Presence Goal
in City 2. After applying the sub-game negotiation-based algorithm in the testbed two separatist
players agreed on playing different strategies improving this way their utility.

5.5 Related Work

The cooperation of agents is widely studied in the areas of multi-agent planning (MAP), and game
theory (GT). However, there are not many works that would combine the concerns about the plan
confidentiality together with the cooperation of self-interested agents. Works based on MAP, in
general, assume a group of implicitly cooperating agents that want to achieve a common goal.
The cooperation is usually addressed by either merging the plans that agents create separately
(discussed e.g. in [42]), or by defining specific rules for the game by the methods of the mecha-
nism design (e.g. in [43]). The aspects of the confidentiality of agents’ plans are typically based
on an independent trusted mediator, to whom the agents reveal their plans. In many domains,
the presence of such mediator is impractical or even impossible. Therefore, we focus on the ap-
proach that does not need the mediator and enable the agents to limit the amount of the revealed
information about their plans.
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Figure 5.9: The game tree from the scenario showing the result without negotiation (the red items in the
game tree) in comparison to a possible solution when negotiations are enabled (the blue items). Each item
in the tree represent a node, where first number is the maxn utility value of the player currently making a
decision, time-step, name of the unit for which the decision is being made, and selected goal for the unit.
If the blue variant is chosen, all separatist players would receive higher utility than when the red variant is
chosen.

A distributed approach for cooperation of agents without a mediator is proposed in [44] where
the authors use logic framework based on resources constrains. The difference from our work
is the limitation of their method to the collaborative agents only while our approach is applicable
for more general self-interested agents with arbitrary correlation of utility functions. Works based
on the results of game theory better address our goal as they work with self-interested agents,
however, the focus is put on finding an appropriate equilibrium reflecting the cooperation (e.g. the
formulation of the Correlated Equilibria for extensive games in [40]), and the agents are usually
assumed to disclose complete information about their intended plan.

Recently, there have been several works developing new methods for the coordination of the self-
interested agents. In [35, 45] the authors present transform the planning and coordination within
a set of loosely coupled agents to a constraint satisfaction problem. However, their approach
requires agents interaction graph to be acyclic. This is a very strong assumption that is generally
not met in complex domains.

The works that are closest to our approach are based on a combination of MAP and GT ([46]
and [47]). Both these works model the multi-agent planning problem as a general-sum stochastic
game. In the first work the authors use a negotiation in order to approximate the subgame-perfect
equilibrium. The second work describe distributed algorithm for finding the Nash Equlibrium in
stochastic games, where the communication between the agents is applied. The crucial difference
for both of these works is that authors do not consider the issue of plan confidentiality hence the
agents negotiate the strategies of the whole game, while in our work only strategies in sub-games
are being negotiated.
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5.6 Conclusions

We investigated the problem of cooperation of self-interested agents with respect to the confiden-
tiality of their plans. We used the extensive-form games and the concept of pre-play communica-
tion to answer two main questions: (1) analysis of the negotiation space of the utility improvement
for an agent, and (2) the negotiation-based algorithm improving the utility value of the game by
negotiating only sub-game strategies. Both of these goals were reached by experimental evalua-
tion.

The interpretation of the experimental results is twofold. The results answering the first question
show, that there is quite a large potential in using the pre-play communication even for domains
with self-interested agents based on adversarial search. Particularly interesting is the high im-
provement presence when the agents’ utility functions are correlated negatively. On the other
hand, the proposed negotiation-based algorithm is able to utilize only a small part of the potential.
Nevertheless, we show that even such simple algorithm can improve the overall utility of the game
by negotiating the strategies in sub-games.

We point out the aspect of trust in the problem description. Currently, the agents always keep their
promises and use the strategy they agreed upon. However, if the adversarial search in a later
stage of the game explores consequences of an agreed strategy to higher depths, the agreement
may become unprofitable for both the agents. This problem of horizon can be overcome by
allowing cancellation of the agreements under certain conditions.

We plan to address this issue in our future work, together with a new version of negotiation-based
algorithm that would be able to reach discovered potential of the utility improvement.
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Chapter 6

Collaborative Opponent Modeling

The methods for creating and maintaining models of other agents’ behavior were intensively stud-
ied in various domains ranging from abstract games like repeated Prisoners Dilemma[48] through
Scrabble[49] and Poker[50] to more realistic domains, such as RoboCup soccer[51]. We have also
investigated the means of creating opponent models in context of complex asymmetric games in
our previous project. The final report of the project [3] presents methods for creating two basic
kinds of opponent models: (1) the model of opponent’s desires (i.e. the declarative OM) as well
as (2) a basic model of agents intentions (i.e. procedural OM). The procedural OM approximated
the behavior of the agent only based of the current state of the world, without modeling agent’s
internal state.

However, our work, as well as majority of other related work, assumes that only one agent models
the behavior of one opponent (or a team of collaborating opponents). Less literature can be found
on how the requirements to opponent modeling change in case of a coalition of agents model
opponent coalitions of other agents, moreover if we allow dynamic changes in the forming the
coalitions.

Our plan in this line of research was to (1) identify a suitable formalism that would allow describing
procedural models of other agents’ behavior (2) evaluate the possibility of automatic acquisition of
such models (3) define a set of operation on the models described in the selected formalism that
are necessary to support cooperation of opponent modeling agents and investigate properties of
these operations.

The definition of the procedural opponent model in Chapter 3 contains agent’s actions, states of
the world and internal states of the agent. As a result, any formalism suitable for describing these
models must contain at least these elements. The most basic formalism for capturing behaviors
with internal state is a finite state machine (FSM). FSMs are used for creating behavior of agents in
many commercial computer games and they were also used for modeling opponents in theoretical
research of repeated games (e.g. [39]). They are represented by a set of internal state of an agent
and a set of labeled transitions between the states. They assume a world progressing in discrete
time steps. In each step, FSM outputs an action based on its internal state and after the agent
applies the action, FSM changes its internal state based on the observations available to the
agent. This is a very general representation of behavior of an agent and some researchers claim
that the representation is sufficient to model even the human brain [52].
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FSM is a very suitable formalism for representing behavior of a single agent. On the other hand,
it is not well suited for representing dependences among the behaviors of multiple agents in a
team, or description of concurrent execution of multiple goals by single agents. However, descrip-
tion and analysis of these phenomena has been widely studies in the field of business process
management. The basic formalization often used in these studies are Peti nets [53], which are
a generalization of FSM. With the increasing amount of research about business processes and
gradual in-leak of its results to other research fields, even more expressive languages for describ-
ing processes has appeared. The process representation language whose design requirements
are most similar to our needs is probably the Learnable Task Modeling Language (LTML) [54],
which uses OWL ontologies and Planning Domain Definition Language (PDDL) to ground the
process elements.

Based on the good experience with FSM in the field of artificial intelligence and the game theory
and with the higher expressiveness of representation of agent (teams) behavior as processes,
we have decided to use the notion of process as a central element of the cooperative opponent
modeling.

The basic feasibility of using (and learning) processes for description of behavior of teams of
agents has been already proven in [55]. The authors used processes and their automatic acqui-
sition to analyze logs acquired during a Robocop soccer competition.

The first step in our effort in this direction was evaluation of the existing tools for automatic process
acquisition in the domain of complex asymmetric games. The progress on this task is reported
in the reminder of this chapter. However, as we have already explained in the introduction of this
report, this line of research has been discontinued in favor of another interesting topic that was
addressed in collaboration with the Carnegie Mellon University. As a result, the actual methods
and analysis of collaborative use the process model for modeling behavior of other agents is not
part of this report.

6.1 Automatic Opponent Model Acquisition

In this section, we report out results in automatic acquisition of procedural opponent models. Dur-
ing the previous project [3], we have developed and evaluated algorithms for creating reactive
opponent models, that predicted agents future actions based solely on the current state of the
world. This corresponds to models of reactive agents or the reactive approximation of agent’s
behavior defined in Chapter 3. In this project, we focused on extending the results to the stronger
representation of the procedural opponent model – the model of agent with internal state. Auto-
matic acquisition of this kind of knowledge is important also for easier applicability of one of the
important result of our previous project [3], which is the adversarial search algorithm for complex
dynamic domains – GB-GTS. The algorithm achieves substantial search reductions while often
produces the optimal plans. The key element of this approach is the procedural knowledge de-
scribing how the players in the domain usually achieve partial goals and perform routine tasks.
This knowledge usually needs to use some permanent internal states of the agents in complex
adversarial settings.

Hand-coding this knowledge can be uselessly costly for the agents of the friendly teams and
imprecise assumptions about the behavior of the opponents can cause biases and suboptimal
courses of actions. Both of these disadvantages can be reduced if the background knowledge can
be automatically extracted from the domain. There are two ways how to extract the knowledge.
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Figure 6.1: Schematic model of the process mining method.

(1) One option is to simulate the execution of the system (e.g. by using all atomic actions and
not the goals in our case), analyze the applicability of the behaviors, and identify which of these
behaviors produce important changes in the state of the world and then generalize these plans.
This approach could find useful knowledge, but the computational effort would be too high. (2) A
more applicable way to acquire this information is to analyze logs of past events in similar domains
and generalize the plans from this knowledge. Such an analysis require less computational effort
and it allows capturing specific strategies and habits of specific players, however, it can be less
precise in comparison to the first possibility.

We present our analysis of using currently available state-of-the-art process mining techniques for
acquiring procedural knowledge necessary for the GB-GTS algorithm. We identify also the pos-
sibility of using similar learning methods for extracting the information about agents’ interactions
that may be used for a more sophisticated selection of agents’ subsets in the ASAS method.

6.1.1 Process Mining

A process is a sequence of actions that actor (or a group of actors) performs in order to achieve
a desired outcome. Process Mining (PM) [56] is a computational technique originating from Busi-
ness Process Management [57]. It is used to analyze logs of events and actions in a complex
system (i.e., in general large organizations, but for our case also complex multi-agent system)
and extract information about the processes executed by the actors (agents in our case). The
main purpose of PM is understanding, reengineering, and optimizing the existing processes.

In the setting of this project, the actions are the ground instances of the action operators that were
actually executed in the scenario: a truck has moved to a node on the map, a separatist unit has
unloaded a package of explosives in a specific city. The log (that is the input for the PM methods)
includes actions form all the agents in the system. The changes of the environment that were not
caused by the modeled agents (i.e. events, such as the food consumption in our domain) can be
included in the log as actions performed by the “nature” agent.

There are several types of results from applying the method of process mining that all help to
describe the process. The first type of the output is a control flow – a graph representing which
actions are usually performed after each other and what are the alternative sequences of actions
that perform the same task. Another part of the output can be discovering social networking
aspect of the system – i.e. identifying which agents in the system are participating on the same
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task, how they work together and what are their goals and dependencies. Finally, a type of the
output of the PM may also be the analysis of the performance of the system. It allows identifying
the bottlenecks of the system and using temporal logic various characteristics can be checked
(e.g. the robustness of the plans).

The earliest works in the domain of PM are from mid-nineties and the progress is summarized
in [58]. Process mining is in many aspects connected to Machine Learning (ML), but there are
several specifics in PM. Mainly, the process models generally form a network of actions (e.g., Petri
nets) in contrast to action sequences of probability distributions (e.g., Markov chains) used in ML.
Therefore, new issues studied in PM are various forms of concurrency.

PM has been successfully applied for analyzing real-life organizations, e.g., hospitals, banks, mu-
nicipalities etc. (see [59]). However, the same set of tools was also used for analyzing team
behavior in the domain of robotic soccer [55]. The process mining tools were used for two pur-
poses. (1) Firstly for analyzing and tuning own team strategies that emerged from the interaction
of the programmed system with the dynamic environment and the opponent activity. (2) But also
to analyze the behavior of the adversary. In the adversary analysis, the main application of the
techniques was recognizing higher level activities (such as attacking) from the basic observations
(such as robot position and velocity). If such an activity was recognized, the team could adjust its
strategy to fit better the new situation.

6.1.2 The ProM Framework

Different existing process mining systems and tools usually use different formats for reading/storing
log records and present their results in a different fashion. As a result, using and combining results
of several different techniques is timely and inefficient. This problem is addressed by the ProM
framework (pluggable environment for process mining) [60], developed at Eindhoven Technical
University. The goal of ProM is to define independent algorithms for process mining. ProM is an
open source tool implemented in Java and distributed under the CPL license.

ProM uses a generic input format – Mining XML (MXML) – for representation and storing of events
and allows importing logs from several existing commercial systems. After cleaning the logs with
an array of provided filters, it allows processing the data using more than 230 plug-ins and the
process mining community is encouraged to contribute more. The exact output of PM depends on
the used plug-in, but ProM can visualize and convert between various standard process modeling
languages, such as Petri nets, EPCs/EPKs, or YAWL.

The available plug-ins support control-flow mining techniques, staff assignments mining, mining
decision rules from the context, but also plug-ins for process analysis and verification.

The applications of the ProM framework include both artificial domains (such as the robotic soc-
cer example mentioned above [55]), or process analysis in real world organizations (e.g., Dutch
National Public Works Department [61]).

6.1.3 Process Mining in the Adversarial Behavior Testbed

In our work, we can see three straightforward ways how the process mining can be used for
opponent modeling and for learning to support our methods. The first two methods (i.e. creating
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control flow and identifying the conditions in branching nodes) help to prune the search space
using the procedural knowledge captured in the form of processes and the third method identifies
the relevant subsets of agents that interact on sub-tasks in the domain.

Event Log in MXML

In order to apply the PM algorithms available in ProM, we need to have a log of events occurred in
the simulation in a compatible format. That is why we have implemented a logger agent that logs
the events occurred in the simulation into the Mining XML format. In the current implementation,
this log contains the actions performed by the players annotated by the important states of the
domain that the actions have changed. A portion of an example log file produced by the logger
agent is depicted in Figure 6.2.

Figure 6.2: A portion of a sample event log in the MXML format.

Whole the log of one run of the simulation is captured as one instance of a single process. If
we wanted to perceive the log as many instances of small number of processes, we would need
some additional (expert) knowledge that would say when one process executed by an agent has
finished and another one started. Adding this kind of knowledge can be part of log preprocessing,
but we did not do that in our experiments.

jakob2008collaborative
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Learning Structures of Agents’ Plans

One of the main type of result of PM is the process control-flow that can be very useful for prun-
ing. If we assume that (1) actions (instantiated operators) of the opponent are observable and
can be captured in the “log”, (2) the ordering of these actions is correct, and (3) we have a rea-
sonable amount of data (which is often not too high), then we can use PM (more specifically the
ProM framework) and the existing algorithms (in form of plug-ins for ProM) for learning common
sequences of actions (plans or process models) of the opponent. These processes can be rep-
resented for example in the form of Petri nets and they would provide information about agents’
actions sequences, parallelisms, branches, and loops.

The agents with one of the simplest behavior in our testbed are trucks. In the first experiment we
present here, we have applied one of the ProM filters to the log and considered just the actions of
single fool truck. We have used the FSM miner to extract a model of the agent’s process and then
we have used a build-in tool to convert the resulting FSM to a Petri net.

Figure 6.3: The food process control flow model of a food truck automatically extracted using the ProM
framework.

The resulting process model is shown in Figure 6.3. This Petri net contain two states. In the left
state, agent is just moving and after application of the move action, it chooses either stay in the
same state or it can transition to the second state. In that state, the agent does not consider
moving anymore and it loads or unloads. This process control-flow is very similar to the expected
process model shown if the interim report of this project [62]. It represents three of the actions
a truck can perform (action wait is missing). This process model compactly represents a lot of
information included in the log. Based on this model, we can infer that

– Action load always follows after a move action. I.e. the truck is never loaded at the same
place where it was unloaded.

– Action move can be executed several times after each other.
– The truck was never idle (action wait was not used for the truck).

This kind of process model can be used as the procedural knowledge heuristics for GB-GTS. Only
the future developments of the game that are consistent with this process can be explored. Even
this simple process model can already cause reduction of the search space.

Learning branching conditions

Even larger computational savings are possible thanks to ProM. Given the process model of
the opponent constructed in the previous step, we can try to learn decision conditions on the
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branchings and loops. The atoms in the decision conditions can have the form of predicates, such
as numerical (in-)equalities, or other test referring to data values appearing in the log. A result of
applying the decision point analysis plug-in from ProM to our process model is in Figure 6.4.

Figure 6.4: Conditions of branching in the process of truck a food truck.

We have analyzed the situations in which the agent chooses to load and in which it chooses
to unload the cargo. The decision mining plug-in extracts the data values that were set before
the decision point was reached in the process. It then uses these values and the decisions
that have been made in the logs to train a decision tree classifier. The circles in the graph in
Figure 6.4 represent the data attributes that are set by the individual actions. The decision is to
load or unload the truck apparently depends on the position of the food truck. In our domain,
the food truck transports the food from the places where it is produced to other places where it
is consumed. The city with the food farm is in a node with relatively low, so the decision miner
learned a condition that in the truck loads in the cities positioned in the nodes with low ID.

While experimenting with this plug-in, we have learned that its options are quite restricted when
using the ProM GUI. For example, it was not possible to disallow the plug-in to use the data
stored in the action just after the decision point and still use data from a longer sequence of
preceding actions. It had also some problems identifying decisions points with loops (i.e. actions
representing a transition to the same point in the Petri net). Furthermore, the plug-in used Weka
library [63] for the machine learning tasks, but it allows using only decision trees for classification
of the alternative decisions. This machine learning technique seems to be very suitable for this
purpose, because it produces human readable rules that can be quickly evaluated. However, in
more complex domains, the reasons for the decisions are not straightforward. In our example, we
would like the system to learn that the truck is loaded in cities with a farm. In order to learn this
kind of knowledge using decision trees, we would have to add to each node of the road network
an attribute saying if there is a city and if the city contains a farm. All the “background knowledge”
that could be useful to determine the decision has to be explicitly encoded. However, using
inductive logic programming (ILP) as the classification model as we did in [64] allows encoding
the background knowledge in form of logical formulas. In our example, it would be sufficient to list
the nodes in which are the cities and represent a relation saying which cities contain a farm.

Even using the decision trees as the learning method, extracted conditions help further restrict
the options that need to be explored for an agent. However, for more practical use of decision
mining techniques in our domain, we would have to implement our own methods.

Analyzing agents interactions

As mentioned above, one of the possible outputs of the ProM framework are social networking
properties of the processes. In a complex process that involves multiple agents, it can identify
which agents participate on which branches of the process, what are their (temporal) depen-
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dences, which agents work together, or which agent hand over the work to other agents. Based
on this information, it could be possible to learn which opponents can prevent agent from reach-
ing a goal and what friendly agents are necessary for a task – hence derive which agents are not
likely to bring new interesting plan candidates in subsets in the ASAS method and therefore we
can omit these k-tuples sub-searches (see Section 4.3).

Our initial experiments with the Social Network Miner (SNM) plug-in in ProM have shown that the
existing plug-in cannot be directly used on our testbed game. One of the main reasons is that
each of the agents usually performs an action every time step, which the SNM interprets as a
collaboration of all agents. Therefore further investigation with more configurable algorithm (or
using our implementation of such miner) is necessary.

6.2 Conclusions

In this chapter, we have identified business process models as an interesting formalization of be-
havior of intelligent agents. It is more powerful then FSM commonly used for representing agent
behavior in AI and Game Theory. Moreover, a large body of research has focused on various
properties of formalisms for describing processes (e.g. Petri nets) and the research community
has developed a number of publicly available tools for extracting processes from systems logs.
We have found a specific tool (called ProM) that seems to be quite stable and used by the com-
munity. Employing this tool, we were able to extract simple process description of the behavior of
an agent in our adversarial behavior testbed. Although the results show that the ProM tool cannot
be used directly out-of-box due to the lack of configurability of implemented algorithms, they val-
idated plausibility of using process mining in general for opponent model acquisition in complex
asymmetric games. The process representation of the agents’ behavior can also be used as the
background knowledge for goal-based game tree search [3]. Integration of the process mining to a
loop of learning and using the background knowledge in the domain could provide the substantial
computational savings of GB-GTS without the need to hand-code the background knowledge.

The results reported in this chapter are just the first step towards creating the methods for collab-
orative construction, refinement and sharing of opponent models, what was the initial objective of
our research. Modeling the behavior as processes seems to be suitable for this task, because the
formal description of the processes and the available tools for processing these descriptions en-
able the agents to easily communicate about the their processes and processes of other agents.

The next step of this research would be to develop specific algorithms and protocols for merging
(possibly inconsistent) processes from different sources in (semi) cooperative setting. As a part
of that, we would have to investigate various quality measures of a process with respect to its
capability to predict other agents’ behavior. The developed methods could be evaluated in the
extended adversarial behavior testbed described in Chapter 2.

However, we have not implemented the collaborative methods on top of process models of other
agents’ behavior in this project. The reason is that the effort planned for this task was used to
address a different problem – deception in teams of mobile sensing agents. Solving this problem
was not explicitly listed as a research task in the project proposal, but it is well aligned with the
project objectives stated in the proposal and it allowed us to start fruitful collaboration with the
Carnegie Mellon University and achieve more significant results thanks to our joined expertise.
More details can be found in Section 1.2.6.

64



Chapter 7

Conclusion

In this project, we are extending the results achieved in Project FA8655-07-1-3083, which has de-
livered novel results in several key areas of adversarial reasoning: formal framework, adversarial
planning and search, and opponent modeling. Besides these results, the project identified the
main challenges of adversarial planning to be the high computational complexity of the available
methods, the need to reason about uncertainty caused by the activity of the opponents and the
partial knowledge of the agents about the state of the world, and the need for cooperation and
explicit coordination among individual (self-interested) agents in the game.

All these challenges were successfully addressed in the current project that presents advance-
ments in the state of the art in all three of the problem areas. In order to tackle the computational
complexity issues we have developed a novel algorithmic scheme that allows asymptotic reduction
of computational complexity of generic adversarial search algorithms. In the area of collaboration
of self-interested agents we have studied the concept of a pre-play communication in the context
of the extensive form games. We have designed a novel algorithm that allows self-interested
agents to negotiate about alternative courses of actions and reach agreements that are benefi-
cial for all the players involved. Moreover, the algorithm allows limiting the amount of information
revealed to the other agents during the communication. In the area of reasoning about uncer-
tainty in complex adversarial settings, we present investigation of the notion of deception and the
algorithm for deception robust placement of a network of mobile sensing agents.

These results are formally grounded in a unified formal framework describing the main con-
cepts related to adversarial reasoning, their relations and properties. Moreover, the presented
algorithms are implemented and experimentally evaluated in the adversarial reasoning behavior
testbed developed in our previous projects and further adjusted to meet the specific needs of this
project.

Even though we have advanced the state of the art in all three main problem areas of adversarial
planning in complex domains, there are various research directions of this field that can be further
investigated.

In the direction of computational complexity, Monte Carlo techniques, such as UCT [10], are
becoming an increasingly popular tool of planning in complex adversarial domains. Therefore
evaluating how the properties of the developed methods change if they run on top of this type
of algorithms would be an interesting continuation promising further improvement in the speed of
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the search algorithm and therefore also further increase in size of the used scenarios. Another
approach supporting the research in the direction of computational complexity is better utiliza-
tion of the cooperation between the agents. In many domains, including our adversarial behavior
testbed, agents could be divided to small number of highly cooperative teams. In these situations,
it might be possible to combine the methods developed for fully cooperative multi-agent planning
[42] with the adversarial planning methods to further improve the efficiency the adversarial plan-
ning process. Finally, in the direction of uncertainty we suggest to continue in the started work of
cooperative opponent modeling. We have already performed initial experiments showing that the
process description formalisms developed in business process management are a promising tool
for describing behavior of (teams) of intelligent agents. An obvious future research suggestion is
to further investigate the suitability of these formalisms for cooperative tasks related to opponent
modeling (such as sharing and merging (parts of) the models.

In order to fully understand the characteristics of the proposed future directions, we suggest fur-
ther improving the theoretical models as well. The recent research in the field of Graphical Game
representations such as the Temporal Action-Game Graphs [65] could be used to formally de-
rive bounds on the quality of the ASAS method in loosely coupled multi-player games. Also, in
Chapter 3, we identify the Alternating-time Temporal Epistemic Logic [24] to be a suitable formal
language for describing properties of complex adversarial domains. We suggest using this lan-
guage to formally define the domain properties that make various adversarial planning heuristics
efficient. When facing a new domain, an intelligent agent (or his designer) can automatically check
this set of properties to identify the most suitable (combination) of adversarial reason techniques
that will achieve the best game playing performance with minimal computational effort.
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[17] Jan Tožička, Michal Jakob, and Michal Pěchouček. Market-inspired approach to collaborative
learning. In Matthias Klusch, Michael Rovatsos, and Terry R. Payne, editors, Cooperative
Information Agent X, LNAI 4149, pages 213–227, 2006.
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2, 16627 Prague 6, Czech Republic
Tel.: +420-22435-7581
Fax: +420-22492-3677
E-mail: {lisy, pechoucek}@agents.felk.cvut.cz

R. Zivan, K. Sycara
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, i5213,
USA
E-mail: zivanr@cs.cmu.edu



2

1 Introduction

Recent studies have investigated how a team (or a network) of mobile sensing agents

can cope with various realistic elements of real world situations. One study (Jain et al,

2009) has considered uncertainty in the reward functions of agents for different alter-

native combinations of positions. Jain et. al. propose different ways to balance between

the exploitation of the information agents acquire during search and the potential of

exploring positions which were not visited yet. Another study (Zivan et al, 2009), con-

sidered the different dynamic elements of such a problem including new targets, tech-

nology failures of sensors and environment conditions which may reduce the quality of

agents’ reports. (Zivan et al, 2009) proposed a model which captures these dynamic

changes, and distributed algorithms for dynamic adjustment of the agents’ deployment

to the evolving state of the problem.

While some of the relevant applications in which mobile sensor networks (MSN) are

expected to be used, as the Rescue scenario (Marecki et al, 2005) or Maximizing Radio

Signal (Jain et al, 2009), are “peaceful” applications in which agents are combating the

forces of nature in order to solve the problem, other (military) applications include an

adversary which is expected to make attempts to prevent the team from performing

their task. For such applications a game theoretic model is appropriate, which can

analyze the expected actions of the adversary and find the best response to it.

We consider a MSN that needs to “cover” targets, i.e. to allocate groups of sensors to

monitor targets. Sensors are allocated as a function of a target’s importance with more

important targets getting higher value/number of sensors. In addition, we address the

possibility of an adversary to use means for deception that will affect the importance

that agents give to targets. Opponents in a military application are expected to use

camouflage in order to decrease the importance that the MSN will give targets of high

importance and on the other hand, attempt to make insignificant targets appear to be

of high importance. Such deception would cause the MSN to select a deployment in

which precious resources are used for the surveillance of insignificant targets while the

targets of high importance are not covered properly.

Following (Zivan et al, 2009), we represent the problem using the Distributed Con-

straint Optimization Problem for Mobile Sensing agents Team (DCOP MST) frame-

work and we aim to apply the local search methods developed for this framework.

There are two main reasons why we focus on the local (incomplete) search methods

instead of using the optimal solutions provided by the complete algorithms. The first

is scalability. The complete methods for solving DCOPs (such as ADOPT (Modi et al,

2005) or DPOP (Petcu and Faltings, 2005)) do not scale favorably with the increasing

number of agents in the systems and we want to be able to operate networks with

hundreds of sensors. The second reason is robustness to dynamic events and technol-

ogy failures. In a sensor network, especially in the settings where deception can be

expected, sensors can be destroyed or their communication interrupted. Local search

methods are more robust in such situations.

Our approach, as in (Zivan et al, 2009), consists of finding an optimal strategy for

the selection of a position of a single agent and empirically test the success of this

optimal strategy when used by agents in a team of agents with a common goal.

The proposed optimal strategy for a single agent considers multiple targets with

various degrees of importance, to which an adversary can increase or decrease the

reflected importance. This effect on the reflected importance is bounded. The bound
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represents the limitations of camouflage for realistic targets (i.e., it is not realistic to

consider that a large army base is disguised as a bush or a single car as a brigade).

We applied our local optimal method to problems with multiple agents in which

agents have mobility and sensing limitations. In the distributed (local search) algo-

rithm, agents share their positions with their neighbors and select alternative positions

using an algorithm based on the locally optimal method.

The local method is stochastic. It gives the guarantee of optimality if it is consis-

tently used over a longer period of time, but the quality of any single change of as-

signment cannot be evaluated. This property prohibits using the standard versions of

the local search algrithms such as the Distributed Stochastic Algorithm (DSA) (Zhang

et al, 2005) or the Max Gain Messages algorithm (MGM) (Maheswaran et al, 2004).

Therefore, we present modifications of the algorithms that are suitable for this situation

as well as a novel local search method designed specifically for this setting.

Our empirical study evaluates the success of both the single agent method and the

local search algorithm for the agent team. In the case of the single agent problem, our

proposed method is optimal in the worst case scenario, however, if the adversary is

very limited or does not use its deception capabilities, a näıve method can produce

high quality results. The same phenomenon was consistently found for the multi agent

problem. An experimental comparison of the proposed local search algorithm compared

to näıve (deception ignoring) local search algorithms, reveals that the success of the

proposed local search algorithm is more apparent when the bounds on the deception

capabilities of the adversary are less tight.

The rest of this paper is organized as follows: Section 2 presents related work. In

Section 3 we introduce deceptions into the standard DCOP MST model. Section 4

presents the optimal (stochastic) method for selecting the position of a single agent.

Section 5 presents generalisation of the approach to multi-agent case using several local

search algorithms designed to deal with the stochastic single agent algorithm. Section 6

describes the methods that were used to create deception in our experimental study.

The experimental evaluation is presented in Section 7 followed by a discussion of our

findings and our conclusions.

2 Related Work

The review of the related work focuses on two main topics. First, we overview the

former results concerning deception in multi-agent systems and game theory. Later

we explain the relation of this research to the recently introduced Quantified DCOP

framework.

2.1 Former attempts to handle deceptions

Deception has been studied in a limited manor in the multi-agent literature. The work

that is most similar to the presented research is Hespanha et al (2000). The authors

investigate deception in a simple two-player zero-sum game. One of the players is

the attacker that decides to attack one of two targets. The defender can distribute

3 units to defend the targets. The more units are defending the attacked target, the

lower is the reward for the attacker. Each of the defending units can be observed

with one of two probabilities. The lower is the natural chance to observe the unit and
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the higher corresponds to the defender intentionally showing the defending unit in

order to deceive the attacker. The authors analyze the optimal strategies for a player

that by manipulating the information revealed to her opponent, she is rendering the

observations of units useless. We perform a similar analysis for the case of mobile

sensors, which requires a novel approach.

Deception in the form of lowering the utility of the available information is inves-

tigated also in Root et al (2005). The task there is to plan paths for a team of UAVs,

which inspect a given path to be used later by a convoy of ground vehicles, in such a

way as to give an adversary that would want to ambush the convoy as little information

as possible. Besides flying over the desired path, the UAVs would randomly fly over

other paths to deceive the observer.

Other analysis of deception in multi-agent systems include the control mechanism

for a team of UAVs creating a single “phantom” aircraft by their movements (Waun

and Ozguner, 2004) and the study by Michael and Riehle (2001) that suggests using

software decoys in network security. These decoys should deceive the attacker to think

the attack was successful, make him continue and allow assessing the nature of its

attack.

Deception was studied formally also in the field of game theory. A formal deception

game was first formulated as an open problem by Spencer (1973). One player is given

a vector of three random numbers from uniform distribution on [0,1]. It changes one

of the numbers to an arbitrary number from [0,1] and presents the modified vector to

the second player. The second player chooses one position in the vector and receives as

its reward the number that was originally on that position. The open question stated

in the paper is whether there is a better strategy than randomly choosing one of the

positions.

The game was solved by Lee (1993), showing that for the case of 3 numbers, the

information provided to second player can be made completely useless, but in case of

4 numbers and changing only one of them, the expected gain of the optimal strategy

of the second player is more than the mean value guaranteed by random choice.

A generalized form of the game is solved by Fristedt (1997). The game is played

with vector of arbitrary length (n). The first player is allowed to permute the vector in

a way that only up to m numbers change their positions. The second player then selects

the position and obtains the reward corresponding to the number at the position in the

original vector. The paper shows that if the first player is allowed to change at least

half of the positions, the resulting vector would not contain any information useful for

selecting a high number by player two.

The model presented in this paper differs from the previous models by allowing

the first player to modify each of the numbers, but only by a given amount. This is

a more realistic assumption in real-world (i.e. military) setting then permutations of

the importance of the targets. The assumption of limited modification of all targets’

importances leads to a novel method for creating the selection strategy that is not

based on the results from the papers above.

2.2 Quantified Distributed Constraint Optimization Problem

Recently, a model based on DCOPs for solving an optimization problem in the presence

of adversarial behavior was proposed: Quantified Distributed Constraint Optimization



5

Problem (QDCOP) (Matsui et al, 2010). QDCOP can represent adversarial behav-

ior which prevents a team of agents solving a distributed optimization problem from

achieving their goal . QDCOP represents the adversarial behavior by adding an addi-

tional set of agents. The difference between the behavior of the cooperative agents to

the adversarial agents is represented by quantifiers, either ∃ for a cooperative agent or

∀ for an adversarial agent. The idea behind the use of such quantifiers is that a coop-

erative agent would search for the best possible assignment therefore the existance of

such a value is enough, while an adversarial agent will select the value which will cause

maximal damage therefore the ∀ quantifier models the worse case scenario.

The solution of a QDCOP is a set of assignments for the existentially quantified

variables that optimizes the goal function if all the generally quantified variables take

the worst possible value (Matsui et al, 2010).

The semantics of the QDCOP formulation closely relates to our requirements. The

optimal solution of QDCOP is an assignment (a position to each sensor in our case),

which optimizes the teams benefit when the adversarial team plays optimally.

However, some elements prevent solving of the problems we aim to solve in this

study using QDCOP:

1. The solution of the QDCOP is a deterministic assignment, which can be almost

arbitrarily bad compared to the mixed strategies1 allowed in our approach. This

fact can be demonstrated for example on a zero-sum version of the matching pen-

nies game (Shoham and Leyton-Brown, 2008). Similar situations often arise in our

domain.

2. In this work, we focus on local serach methods to achieve scalability to large sensor

teams and higher robustness of the method. No local search algorithm for QDCOP

is known so far. Moreover, in QDCOPs the adversarial agents cooperate in search

with the standard agents. The completeness of the algorithms in previous studies

of QDCOP ensure that the worst case scenario will be considered. This may not

be true if the adversarial agents participate in a local search algorithm.

3 Problem Definition

3.1 Distributed Constrained Optimization Problem

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents A1, A2, ..., An. X is a finite

set of variablesX1,X2,...,Xm. Each variable is held by a single agent (an agent may hold

more than one variable). D is a set of domains D1, D2,...,Dm. Each domain Di contains

the finite set of values which can be assigned to variable Xi. R is a set of relations

(constraints). Each constraint C ∈ R defines a non-negative cost for every possible value

combination of a set of variables, and is of the form C : Di1×Di2×. . .×Dik → R+∪{0}.
An assignment (or a label) is a pair including a variable, and a value from that variable’s

domain. A full assignment is a set of assignments that includes all the variables. The

cost of a full assignment is the sum of all constraints over the assignments in PA. A

solution is a full assignment of minimal cost.

1 Probability distribution over agent’s actions
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Fig. 1 Schema of the problem. The real environment requirement is not known to the sensors.

3.2 DCOP for Mobile Sensing agents Team (DCOP MST)

The definition of the problem we aim to solve in this work is similar to the dis-

tributed constraint optimization for mobile sensing agents team (DCOP MST) model

as proposed in Zivan et al (2009) with the addition of possible deception. The task

in DCOP MST is to find a deployment for a team of mobile sensing agents, so that

they meet the specified requirements for surveillance of individual targets, i.e. points in

space. The problem is set to a discretized metric space with a finite set of positions. A

network of finite number of agents A1, . . . , An operates in the space. Each of the agents

(Ai) is placed in some position cur posi and it is characterized by three parameters.

The sensing range (SRi) is the effective coverage range of the agent, i.e., agent Ai

can detect and cover all the targets that are within its sensing range from cur posi.

The mobility range (MRi) is the range that an agent can move in a single time step

(iteration). And the credibility Credi is a real positive number representing the quality

of the sensor.

DCOP MST further defines an environmental requirement function ER. This func-

tion expresses for each point in the area, the required joint credibility amount (the sum

of the credibility variables) of agents that have this point within their sensing range

(i.e. are covering it). Function Cur DIFF calculates for each point in the area the dif-

ference between the current value of the ER function and the sum of the credibilities

of the agents which are currently covering it. Formally, if we denote the set of agents

within their sensing ranges from point p by SRp then:

Cur DIFF (p) = ER(p)−
∑

Ai∈SRp

Credi (1)

The global goal of the agents is to cover all the targets according to ER (i.e. to reduce

the largest value of Cur DIFF to zero) in a pre-defined number of time steps. Since

this goal cannot always be achieved, we define a more general goal which is to minimize

the largest value of the Cur DIFF function over all targets in the area.

3.3 DCOP MST with deception

In addition to the original properties of DCOP MST, we define the properties relevant

for deception. We assume that an adversary with limited capabilities has used means
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of deception to make the environmental requirements appear to be v(p) for each point

p. The capabilities of the adversary are expressed by a pair of functions ∆+ and ∆−.

For each point in space, the apparent environemnt requirement of the position (v(p))

can be any number between ER(p)−∆−(p) and ER(p) +∆+(p).

The sensors do not have the knowledge about the real environment requirement

of the point (ER(p)), but only about the apparent environment requirement v(p).

Moreover, the sensors have some information about the adversary capabilities, options

and effort put into deception. This knowledge is represented as another pair of functions

bottom and top. These functions relate the apparent requirements to the real ones for

the individual points in space. The unknown real ER of the position (ER(p)) can be

any number between bottom(p) and top(p).

The relation between the two pairs of function defining the capabilities of the

adversaries is not tight. The only requirement for the mappings is that

∀p ER(p) ∈ [bottom(p), top(p)] (2)

The goal of the sensors remain to cover the real requirements given by ER.

Even though our methods were designed for this general formulation, we often use

a special form of defining the adversary capability in the ilustrative examples and in

the experimental evaluation. It is determined by a limited interval [0,MaxImp] and

the constant ∆, which is the same for all points. The ER of any point can be modified

by ∆ up or down as long as the resulting apparent requirement stays in the interval

[0,MaxImp]. The same ∆ defines also the knowledge available to the sensors. The real

ER of a point can be ∆ higher or lower then the apparent one. Note that this does

not mean that the resulting itervals are the same. Formally, the deception capabilities

with fixed ∆ are defined as:

∀p ∆+(p) = min(MaxImp− ER(p),∆)

∆−(p) = min(ER(p),∆)

top(p) = min(v(p) +∆,MaxInt)

bottom(p) = max(0, v(p)−∆)

Figure 1 illustrates the problem of DCOP MST with deceptions.

For this paper, we impose a specific restriction on the DCOP MST framework. We

assume that the sensing range of all the sensors is restricted to their position, i.e. the

sensors can cover only the targets at its current position.

In the following, we often use for brevity the term importance instead of environ-

ment requirement and target instead of a position with nonzero environment require-

ment.

4 Formal Deception Game

This section presents one of the main contributions of the paper. It shows the derivation

of sensor placement methods that are robust to deception. These methods allow choos-

ing the targets with high importance while keeping the right amount of randomization

to prevent the adversary from misleading the sensors via deception.
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4.1 Formal Game Definition

We define the problem being solved in this section as a game between a single sensor

and an adversary that uses deception (such as decoys or camouflage) to make the sensor

less efficient. The adversary starts with n targets of various positive importance values

(y1, . . . , yn). It can use deception in order to generate a perceived importance of each

target (v1, . . . , vn), but the types of the targets and the effort he can spend on the

camouflage for each of the targets does not allow him to modify the importance of the

target arbitrarily. The perceived importance for each target is bounded to an interval:

vi ∈ [yi −∆−i , yi +∆+
i ]

where ∆+
i as well as ∆−i are non-negative real numbers and yi−∆−i ≥ 0 for each target

i. The sensor can perceive the modified importance values and we assume it knows

the boundaries bottomi, top
−
i . Based on this information, it decides to cover a single

target, trying to maximize the real importance of the target. We represent the strategy

of the sensor as a probability distribution of covering individual targets (x1, . . . , xn).

Deterministically selecting single target is a degenerate case of this distribution that is

one for one target and zero for all the other targets.

Our goal is to create a sensor placement method that would be robust against

deception, so we perform analysis of the worst case scenario. This also relieves us from

the need of defining exact relation between the functions ∆+,∆− and bottom, top. The

natural formalization of the problem would then be maximizing the expected value of

the covered target in case of the worst case y that is consistent with the observations

v.

max
x

min
y

n∑

i=1

xiyi

However, this optimization is trivial. For any fixed x, the worst case corresponds to

setting all yi = bottomi. It says that the sensor covers less important targets in case

that all the targets are generally less important. It constitutes the worst case in problem

instance rather than some smart information manipulation by the adversary. In order

to focus on adversary deceptive strategies, we use alternative optimization criteria to

reduce the influence of the underlying problem.

4.1.1 Relative to the Random Strategy

If we assume that the sensor player is rational (makes optimal decisions), it should

be able to figure out when the information provided by the adversary is useless and

hence it should always reach at least the payoff of random strategy corresponding to

the uniform probability distribution over the targets.

1

n

n∑

i=1

yi

We can reformulate the objectives of the players relative to this assured value. The

sensor player tries to gain more than what is provided by the random strategy and the
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adversary uses deception to make the information useless and force the opponent to

play the random strategy. Formally, the task that the sensor solves is

max
x

min
y

∑n
i=1 xiyi

1
n

∑n
j=1 yj

s.t.
0 ≤ x ≤ 1∑n

i=1 xi = 1

bottom ≤ y ≤ top
(3)

4.1.2 Relative to the Optimal Selection

The previous criterion originated from the random strategy that an agent can easily

perform. As a result, the solution based on this criterion always achieves at least the

quality of the random strategy. However, it is not the only option of reducing the

influence of problem instance to the optimization. We can formulate the problem as

finding a strategy, that is as close to the (unperformable) optimal strategy as possible.

Then the optimization then becomes

max
x

min
y

∑n
i=1 xiyi

maxj∈{1...n}yj

(4)

subjected to the same constraints as in formula 3. The last option we explore is to

substitude the ratio to the comarision strategy with a difference.

max
x

min
y

[(
n∑

i=1

xiyi

)
− max

j∈{1...n}
yj

]
(5)

All these problem formulations still require finding the strategy that assures the

highest expected coverage, but they remove the trivial cases and provide more inter-

esting solutions of the game. The reminder of this section provide the means to solve

these optimization problems optimally and the applicability tradeoffs of individual

formulations are experimentally evaluated and disscussed in Section 7.

4.2 Worst Case for Fixed Sensor Strategy

The optimal solutions for each game formulation can be found in form of a linear

program. We use the standard method often used in game theory to rewrite the max-

min optimization to max optimization for the price of defining additional constraints

(e.g. Shoham and Leyton-Brown, 2008). In order to do that efficiently, we need to

reduce the set of worst case y for any x to a small (polynomial) size. Directly from the

problem formulation, the set of possible real importance vectors consistent with the

observation is continuum.

4.2.1 Relative to the Random Strategy

In this subsection, we show what is the worst case y for any fixed x and for the case

of optimization in formula 3.

Lemma 1 The function f(x,y) =
∑n

i=1 xiyi
1
n

∑n
j=1 yj

is monotonic in any yc if all other yi

and xi are fixed.
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Proof For arbitrary c ∈ 1..n, we compute the sign of the partial derivative with respect

to yc. The constant 1
n in the denominator can be omitted.

sgn

(
∂

∂yc

(∑n
i=1 xiyi∑n
j=1 yj

))
= sgn



xc
∑n

j=1 yj −
(∑n

i=1 xiyi
)

1
(∑n

j=1 yj

)2


 =

sgn

(
n∑

i=1

(xc − xi)yi
)

(6)

In case of i = c the term (xc − xi) = 0 and it makes formula (6) independent of the

value of yc. The sign of the derivative is constant in yc, hence the function is monotonic

in yc.

An immediate corollary of the fact above is that in finding the worst case y, we need

to consider only the vectors with all their coordinates set to the extreme values.

Corollary 1 For all the coordinates in the worst case y, yi = bottomi, yi = topi or

the coordinate does not influence the optimized value.

Proof Let y be the worst case for a fixed x and consider an arbitrary coordinate yi.

Lemma 1 says that the sign of the derivative of f according to yi is constant. If it is

(constantly) zero, the optimized value does not depend on the value assigned to yi.

Otherwise f is either strictly increasing or strictly decreasing in yi. If the sign of the

derivative is (constantly) +1, any yi > bottomi can be decreased to yi = bottomi de-

creasing the optimized function. If it is (constantly) −1, any yi < topi can be increased

to yi = topi decreasing the optimized function.

Lemma 2 For any fixed x, there exists a coordinate c ∈ 1 . . . n, such that the worst

case y can be constructed as
if xi ≥ xc then yi = bottomi

else yi = topi

Proof The proof is by induction on the number of unset coordinates. First we show

that we can always set some coordinates of y in the global optimum at the beginning.

Then we show that after setting any number of coordinates, we can find one more that

can be set in the global optimum.

I) Assume the coordinates

b = arg min
i∈1..n

xi, t = arg max
i∈1..n

xi

Then for any i ∈ 1..n holds

((xb − xi)yi) ≤ 0, ((xt − xi)yi) ≥ 0

As a result, for the sign of the partial derivative in formula (6) the following holds:

sgn

(
n∑

i=1

(xb − xi)yi
)
≤ 0, sgn

(
n∑

i=1

(xt − xi)yi
)
≥ 0

for all possible values of other xi and yi. That means that in the globally optimal y,

we can set

yb = topb, yt = bottomt
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II) Assume that some of the values yi are already set. Without loss of generality

rename the coordinates so that the set coordinates are 1, . . . , k. Then continuing from

formula 6

Sc = sgn




k∑

i=1

(xc − xi)yi
︸ ︷︷ ︸

Ac

+

n∑

i=k+1

(xc − xi)yi




and the term Ac is a fixed constant for each c. Using the same argument as in part I)

(a) if ct = arg maxi∈k+1..n xi & Act ≥ 0 then Sct ≥ 0 for all xi, yi and we can set

yct = bottomct

(b) if cb = arg mini∈k+1..n xi & Acb ≤ 0 then Scb ≤ 0 for all xi, yi and we can set

ycb = topcb

In order to finish the proof, we have to show that at least one of the conditions in

(a),(b) always holds. Clearly xct ≥ xcb . Assume that (b) does not hold

Acb > 0⇔
k∑

i=1

(xcb−xi)yi > 0
xct≥xcb=====⇒

k∑

i=1

(xct−xi)yi > 0⇔ Act > 0⇒ (a) holds

The induction always sets the yi for the unset target with minimal xi to topi or the

yi corresponding to the unset target with maximal xi to bottomi. As a result, if all of

the coordinates are set, the last set coordinates define the xc from the proposition.

4.2.2 Relative to the Optimal Selection

The worst case in the formulation relative to the optimal target selection has a simpler

form.

Lemma 3 For any fixed x, there exists a coordinate c ∈ 1 . . . n, such that the worst

case y in formula 4 can be constructed as
if i = c then yi = topi

else yi = bottomi

Proof For arbitrary x and y, let c = arg maxj yj . Then the optimized function from

formula 4 is
xcyc +

∑
i∈{1...n}\{c} xiyi
yc

This function is always non-increasing with increasing yc, because of 0 ≤ xc ≤ 1;

hence the worst case can always have the most important target set to its upper bound

yc = topc.

The function is non-increasing with decrease of any other yi, i 6= c and that is why

all the other targets can in the worst case be decoys, i.e., yi = bottomi.

The same lemma with a very similar proof holds also for the optimization in for-

mula 5.

Lemma 4 For any fixed x, there exists a coordinate c ∈ 1 . . . n, such that the worst

case y in formula 5 can be constructed as
if i = c then yi = topi

else yi = bottomi
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4.3 Optimal Strategies for the Sensor

In the previous section, we have managed to restrict the set of all situations consistent

with the observations that constitutes the worst case for any x to a finite set for all

of the suggested optimization criteria. In this section, we present the corresponding

linear programs for finding the optimal strategy x for each case. The case of strategy

relative to the optimal selection is much simpler and it is presented at the end of this

chapter. We start with the optimization relative to the random strategy, for which

the set of possible worst cases is based on the previous section still exponential in the

number of targets. When a max-min optimization is transformed to the corresponding

max optimization (e.g., Shoham and Leyton-Brown, 2008), a constraint must be added

for each strategy y that can possibly be the worst case for a valid strategy x of the

maximizing player.

4.3.1 Relative to the Random Strategy

For the optimization relative to the random strategy, Corollary 1 assures that we need

to add a finite, but exponential number of constraints. Each target could have been

camouflaged all the way to the higher or all the way to the lower importance.

Corollary 2 If we denote the set of all targets T , the optimal strategy for the sensor

in the deception game can be computed by the linear program

maxx,z z s.t.

1 ≥ x ≥ 0∑n
i=1 xi = 1

∀A ⊆ T
∑

i∈A xibottomi+
∑

i∈(T\A) xitopi∑
i∈A bottomi+

∑
i∈(T\A) topi

≥ z
(7)

The rest of this subsection shows, how the number of constraints can be further

reduced. First, we need to define the notion of partial ordering of the targets and

present a technical lemma.

Definition 1 We define the relation ti D tj on the targets that have both the upper

and lower bounds of their intervals ordered.

bottomi ≥ bottomj & topi ≥ topj

Note, that this relation is transitive, because of the transitivity of the ordering of the

bounds.

Lemma 5 If tkD tl then there is an optimal strategy for the sensor for which xk ≥ xl.

Proof Remember that the worst case for any sensor strategy is modifying the impor-

tance of the targets to the bound of the interval. If both of the inequalities in the

definition of D hold as equalities, the ordering of the probability of covering them

(xk, xl) cannot make difference for the sensor player.

Next we assume both inequalities defining tkD tl are strict. We consider a modified

game, where the players are presented the real importance of the targets and they

simultaneously decide on which target to cover on the sensor side and how to modify

the real importance of the targets in the available bounds on the adversary side. The

optimal strategy for the sensor in this game corresponds to the deception-robust play
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in the original game. The formulation of the alternative game as max-min optimization

is exactly as in formula 3. The game is a two player full information zero-sum game

with finite number of strategies on each side and hence it has a Nash equilibrium with

a unique value (e.g. Shoham and Leyton-Brown (2008)). Let (x,y) be a pair of the

equilibrium strategies.

With coordinates renamed such that ∀i ∈ 2..n xi−1 ≥ xi, Lemma 2 says that there

is a coordinate c, such that x optimizes

n∑n
j=1 yj

(
c−1∑

i=1

xibottomi +

n∑

i=c

xitopi

)

In order to prove that in this case xk ≥ xl, we show that if xk < xl then swapping

values of xk and xl improves the strategy of the sensor player for the fixed y which

would be a contradiction with (x,y) being the Nash equilibrium. The sensor player

would have an incentive to change its strategy if the adversary keeps its strategy

unchanged. The fixed strategy of the adversary implies that the denominator of the

optimized function stays the same.

For l < c ≤ k the strategy is improved if

xlbottoml + xktopk < xkbottoml + xltopk
(xl − xk)bottoml + (xk − xl)topk < 0

(xl − xk)︸ ︷︷ ︸
>0

(bottoml − topk) < 0

bottoml < topk

The last inequality holds from strict tk D tl, because

bottoml ≤ topl < topk

For l < k < c the strategy is improved if

xlbottoml + xkbottomk < xkbottoml + xlbottomk

bottoml < bottomk

For c ≤ l < k the strategy is improved if

xltopl + xktopk < xktopl + xltopk
topl < topk

All the final inequalities trivially hold from tk D tl.

The last two cases to finish the proof are if just one of the inequalities holds strictly.

If bottomk = bottoml and topk > topl then for cases besides l < k < c the argument

about improving the value for the sensor player above holds. In this case, the pay-off of

the sensor player does not change, but we show that if the sensor player switches the

probabilities of covering targets tk and tl, the adversary does not have an incentive to

deviate from its original strategy. This means that the original strategy of the adversary

and the modified strategy of the sensors form a Nash equilibrium.

Remember the construction of the worst response of the adversary in the proof of

Lemma 2. If the adversary modifies the real importance of the targets one by one, it

arrives first to xl as before. All the targets that are camouflaged so far are set on the

same values as for the unmodified sensor strategy. The direction in which the target tk
will be camouflaged does not depend on the bounds on yk. It depends only on xl and
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the already camouflaged targets. As a result the target tk, currently corresponding to

the value xl will be camouflaged in the same direction as tl before, setting it to the

same value. If construction of the optimal strategy for the adversary continues and

encounters xk, all the data used to compute the direction of deceptively altering the

target tl are the same as with the original sensor strategy and it is altered to the same

value as tk before. That is why the worst response to the modified sensor strategy is

the same as to the original sensor strategy. The proof of the last case where the second

condition holds as equality is symmetric.

Using the previous lemma, we can reduce the number of constraints needed in the

linear program (7).

Theorem 1 The optimal solution for the sensor player in optimization relative to the

random strategy can be computed by the linear program

maxx,z z s.t.

1 ≥ x ≥ 0∑n
i=1 xi = 1

∀ti D tj , 6 ∃tk ti D tk D tj : xi ≥ xj
∀A ∈ T, 6 ∃i ∈ A, j ∈ (T \A)tj D ti :∑

i∈A xibottomi+
∑

i∈(T\A) xitopi∑
i∈A bottomi+

∑
i∈(T\A) topi

≥ z

(8)

Proof From Lemma 5, we know that introducing the constraints on the ordering of

xi will not prevent us from finding the optimal solution. The linear program finds

the correct solution, if for any strategy x that respects the ordering, a constraint

representing the worst response to the strategy is present. From Lemma 2, we do not

have to consider that the adversary decreases the importance of a target that is covered

with higher probability than another target for which it increased the importance.

Now consider a basic setting, in which a single sensor can cover one of n targets and

the sensor knows that the importance of each of the targets could have been modified

by a fixed ∆ up or down. Even if the resulting apparent importance is bounded to

a predefined interval [0,MAX IMP], the relation D creates a full ordering. It is the

same ordering as the ordering of the apparent importance. For this kind of settings,

the linear program computing the strategy for the sensor has only small number of

constraints that is linear in the number of targets.

Corollary 3 If the ordering induced by the relation D is full and if we rename the

targets so that

∀i ∈ 2..n ti−1 D ti

then the optimal strategy for the sensor can be computed by the linear program

maxx,z z s.t.

1 ≥ x ≥ 0∑n
i=1 xi = 1

∀i ∈ 2..n xi−1 ≥ xi
∀j

∑j
i=1 xibottomi+

∑n
i=j+1 xitopi∑j

i=1 bottomi+
∑n

i=j+1 topi
≥ z

(9)



15

4.3.2 Relative to the Optimal Selection

The number of possible worst case y for any x in the case of optimization relative to

the optimal selection is linear in the number of targets directly from Lemma 3 for the

ratio case as well as from Lemma 4 for the differece case.

Theorem 2 For optimizing the ratio of the importance of the covered target to the

importance of the best possible selection (formula 4), the optimal strategy of the sensor

is the result of

maxx,z z s.t.

1 ≥ x ≥ 0∑n
i=1 xi = 1

∀j xjtopj+
∑

i6=j xibottomi

topj
≥ z

(10)

And similarly in case of difference from the optimal selection.

Theorem 3 For optimizing the difference between the importance of the covered target

to the importance of the best possible selection (formula 5), the optimal strategy of the

sensor is the result of

maxx,z z s.t.

1 ≥ x ≥ 0∑n
i=1 xi = 1

∀j
(∑n

i=1 xibottomi

)
− topj ≥ z

(11)

All the methods derived in this section give a mixed strategy (distribution) over

alternative sensor positions. The applicability tradeoffs of different formulation are

shown and discussed in Section 7.

5 Multiple Coordinated Sensors

In this section, we propose local search algorithms for a team of agents aiming to cover

multiple targets in a given area, which use the solution for the formal deception game

described in the previous section as a deception-robust heuristic. We start by present-

ing local search methods for standard DCOP MST and then present the adjustments

required to convert them into deception aware methods.

5.1 Local search for DCOP MST

We assume that the ER function used by the team of agents is accurate. As in standard

DCOP, the local search method which we present perform in a synchronous manner.

The neighborhood of an agent is defined as all the other agents that can possibly

cover the same target as the agent, after a single iteration of the algorithm. In each

synchronous step of the algorithm all neighboring agents exchange messages. The main

building block which all algorithms use is the method for a single agent to decide what

is the best alternative position within its mobility range. An immediate trivial choice

in the domains with sensing range that allows covering only single position is the

point with the highest Cur DIFF value. However, for the case that this point can be
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covered from multiple positions, an efficient method is proposed in Zivan et al (2009)

for selecting the optimal position among them.

The local search methods proposed by Zivan et al (2009) are based on the following

two algorithms:

1. MGM MST: as in standard DCOPs, after finding the best alternative position as

described above, an agent sends to its neighbors the utility improvement (or in

our case, reduction in the Cur DIFF function) it expects to get by moving to this

position. The agents, whose best expected reduction is higher than their neighbors’,

perform the move. Ties are broken according to agent’s indexes.

2. DSA MST: An agent may move to the best alternative position only if the reduction

in the Cur DIFF value is positive. In that case, it performs a random choice to

move with probability p or stay at its current position otherwise. In (Zivan et al,

2009), p was set to 0.6.

Zivan et al (2009) propose novel exploration methods that improve the performance

of these algorithms, when the technology, e.g., sensing and mobility ranges, is limited.

5.2 Deception aware Local Search methods

Introducing deception to the DCOP MST model adds one important challenge which

is not faced by standard local search methods for DCOP. As shown in the previous

section, the locally optimal strategy is not deterministic as in the standard model.

The result of the methods proposed in Section 4 is a probability distribution over the

alternative positions an agent has for covering individual targets. This fact requires

modifications of the mentioned local search algorithms, which build upon the ability

of an agent to detect her single best alternative and quantify its quality.

5.2.1 Deception aware DSA

In each synchronous step in the DSA algorithm, agents are required to compute their

optimal alternative assignment (position with the largest reduction of the Cur DIFF

function in our case) under the assumption that all the other agents keep their as-

signments unchanged. Using the deception aware local methods presented in Section 4,

many local reductions have incomparable quality. It is often not possible to say that one

position is strictly better than another. The benefit of using the proposed algorithm

demonstrates only statistically, if the agents follow the probability distribution given

by the method. In other words, the basic building block of finding the best alternative,

on which local search methods are based on, is not possible in many cases.

If the upper bound on the possible real importance of the currently covered target is

lower than the lower bound on the possible real importance of a target covered from an

alternative position, then covering the alternative target is clearly better than covering

the current one. However if this does not hold, any ordering of the real importance of

the positions is possible.

If we want to apply DSA in local search with a stochastic local improvement func-

tion, we need to use a variant of DSA proposed by Zhang et al (2005) (DSA-C), which

allows the sensors to move not only in cases of positive local reduction, but also if the

best new position is not worse than the current one. If we disallowed moving to the
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incomparable states, the deception-aware algorithm would have very restricted explo-

ration capabilities.

We use this version of DSA for the deception ignoring variant as well. It allows

additional exploration in the DCOP MST problem. It is often beneficial for an agent

that cannot see any more important targets from its current location to move to an

equivalently good position, because it changes the sets of its possible assignments in

the next steps of the algorithm.

5.2.2 Deception aware MGM

When we try to incorporate the stochastic local method in MGM, we encounter similar

problems as explained above for DSA. It is not possible to define a strict ordering

between the alternative assignments and for the same reason, it is not possible to

enumerate the actual gain of a change in assignment by a single agent.

However, the main motivation of the MGM algorithm is clear. If two neighboring

agents change their assignment simultaneously to what they consider best if all the

others do not change their assignments, the resulting combination of assignments can be

arbitrarily bad. The main benefit of MGM is that only one agent in each neighborhood

moves in a single step. The second benefit of MGM is that the agents that make more

difference tend to move first; hence speeding up the convergence.

In the deception aware variant of MGM, we keep just the first benefit. If we decide

on the agents replacing their assignment solely according to the indices, some agents

would tend to change their assignments much more often than others, which would

lead to a very limited exploration of possible assignments. If we want to explore the

assignments for individual agents evenly, we should ensure that all the agents will

perform their local reductions as equally often as possible. That is why in the deception

aware variant of MGM, each agent counts how many times it has already changed

location and shares this information with its neighbors in each step. Only the agent

that moved the least times in its neighborhood moves. The ties are again broken by

agents’ indices.

5.3 Problem Specific Heuristic

Besides the modificatons of the standard DCOP local search methods, we propose a

problem specific local search heuristic. Our goal is to create a heuristic that would

satisfy three requirements.

1. It should minimize the chance of placing redundant sensors on a target. A sensor

is redundant on a target (t), if even after removing the sensor from the target, the

sum of the credibility of the remaining sensors covering it is higher than top(t).

2. Increase the probabilities that targets will be covered.

3. Each agent should keep the ratios between the probability of covering each of the

targets in its range by any of the agents as similar to the probability distribution

given by its local method as possible. This property ensures that the chance for

this agent to be deceived is minimized.

A simple solution is that in each step, each agent computes its distribution over its

assignments (possible targets to cover) and sends it to its neighbors together with a

random number for each target. After obtaining all the distributions from all neighbors,
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Input: neighbors – set of neighbors; dist : A → (T → [0, 1]) – received distribution; rnd :
A→ (T → [0, 1])–received random numbers

1: myDist := dist(this)
2: myTargets := keys(myDist)
3: for t ∈ myTargets do
4: higher = 0
5: for a ∈ neighbors do
6: if myDist(t) < dist(a)(t)

or (myDist(t) = dist(a)(t) and rnd(this)(t) < rnd(a)(t)) then
7: higher := higher + Creda
8: end if
9: end for

10: if higher ≥ top(t) then
11: myDist(t) := 0
12: end if
13: end for
14: normalize(myDist)
15: return select target according to myDist

Fig. 2 Method executed by an agent in the maxStay heuristic after receiving messages from
its neighbors.

the agent sets the probability of covering some targets where it might be redundant to

zero.

The pseudo-code of this process is presented in Figure 2. For each target the agent

considers, it computes the sum of credibility of the neighbors whose distributions in-

clude higher probability to cover the target than its own. If the sum is higher than

the maximal possible real requirement of the target, it sets its probability of cover-

ing the target to zero. After analyzing all targets, the distribution on the remaining

targets is normalized and the agent chooses its assignment according to the modified

distribution. If no targets remain in the distribution, the agent moves randomly.

Ties are broken using random numbers agents pick for each target. The reason

for using the random numbers instead of indices for breaking ties ensures uniform

assignment of the targets. If the algorithm preferred coverage by the agents with higher

indices, they would end up covering more targets than the agents with lower indices. In

general, the method results in agents reducing the probability that they will cover some

target. In the extreme case, an agent can reduce the probability for all targets which

it had positive probability to cover in the original distribution. In order to prevent

a completely uniform selection of position in such a case, we add a small constant

probability for all targets within range. Thus, if an agents did reduce the probability

of all targets in its original distribution, she would still prefer covering a target than

avoiding any coverage.

This heuristic has several favorable properties. First, all the agents move in each

iteration, which allows fast convergence. Second, the algorithm never creates redundant

agents (e.g., in case of agents with credibility which allows them to fully cover the

requirement of any target, two agents never go for the same target). However, in a

single step, a target can be under-covered if the agents that did not ignore the target

did not want to cover it with probability 1. Note, that in case a target has not been

covered after a single iteration, it might be covered after the next iteration. In fact,

the set of agents that consider it for coverage might have changed due to agents’

movements. Third, the probability for any target to be covered is never lower than the
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Input: T – set of targets; ER : T → R+ – real importance; ∆+,∆− : T → R+ – the
boundaries on the apparent importance

Output: masked : T → R+ – apparent importance of the targets
1: S := {t1 ∈ T : ∀t2 ∈ T ER(t2)−∆−(t2) < ER(t1) +∆+(t1)}
2: d := arg mint∈S ER(t)

3: for t ∈ T do
4: if ER(t) > ER(d) then
5: masked(t) := ER(t)−∆−(t)
6: else
7: masked(t) := ER(t) +∆+(t)
8: end if
9: end for

10: return masked

Fig. 3 DeceiveMax – a method for optimally deceiving the näıve selection of the apparently
maximal target.

original probability calculated by any of the agents using the local deception aware

algorithm.

6 Deception Algorithms

The methods presented in Section 4 were developed with the worst case deception

in mind. However, creating the optimal deception is a nontrivial problem of its own.

For the general problem with multiple agents and multiple targets, there is no straight

forward way to compute the optimal deception and the solutions are not unique. That is

why in this section we describe the (heuristic) algorithms we use for creating deception

in our experimental study. Generally, we were trying to create methods that would

minimize the efficiency of the näıve (deception ignoring) methods as much as possible.

All the algorithms are designed for sensors with sufficient credibility to fully cover the

requirement of any target, but some of them are efficient even in the more general

setting.

6.1 Single Sensor case

We start with the single sensor formal deception game (i.e. one sensor covering one of

the targets without any mobility restrictions). In this case, the optimal deception will

minimize the real importance of the target that will appear to be the most important

target after the deception is applied.

One option for creating the optimal deception in this scenario is to follow the

algorithm presented in Figure 3. The apparent importance of all targets are modified

to the boundary of their possible importance values as suggested by Corollary 1. The

algorithm finds the optimal target d (as decoy) that would be covered by the näıve

algorithm. It is the least important target that may be modified to appear as the most

important target. The apparent importance of d is set to the maximal value and the

apparent importances of all the targets that are more important than d are decreased.

As a result, the target d appears to be the most important. This is regardless of the

apparent importance of all targets with real importance lower then the importance of

d.
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The performance of the näıve algorithm does not depend on the apparent im-

portance of the targets with importance below d. However, they can influence the

performance of the deception aware algorithms. In order to evaluate this effect, we use

two versions of the algorithm. The version in Figure 3 is inspired by the worst case

described by Lemma 2. It increases the importance of the targets making the stochastic

algorithms more likely to pick the less important targets. The other variant we use for

comparison is to decrease the apparent importance of all the targets less important

than d. This variant should allow the deception-robust algorithms to perform better

and we denote it by DeceiveMax+.

6.2 Multi-agent Case

Generating the optimal deception in the more general scenario, which includes multi-

ple agents with limited mobility, is a much more complicated task and therefore the

algorithms we use are heuristic. The main reason why creating a good deception in

this case is hard are the different individual views of the agents:

– Two agents consider covering different, partially overlapping, subsets of targets.

– Different subsets of targets are considered from consecutive positions of a sensor.

– Part of the targets can be (partially) covered by other agents in the previous steps.

On the other hand, there is only one fixed deception that should deceive as many

sensors as possible. A situation, in which the local view of the sensor can influence the

optimal deception is demonstrated in the following example.

Example 1 Assume that a sensor can cover targets with real importances (9, 8, 7) from

a single position in the area. If the deception capability is constantly 2 (∆ = 2), the

optimal deception without considering mobility restrictions based on the algorithm

in Figure 3 would be (7, 6, 9). However, if the agent considers the situation from a

position, where the third target is not in its mobility range, based on the remaining

targets (7, 6), the näıve algorithm easily selects the most important target and receives

the reward of 9. In this case, a more efficient deception against the näıve sensors would

be (7, 8, 9). The agent in the alternative position would cover the target with apparent

importance 8 and obtain the reward 8.

Based on the motivation from the above example, the heuristic used for creating

the deception in cases with limited mobility ranges tries to make the gradient of the

apparent importance opposite to the gradient of the real importance on as large subsets

of targets as possible. It maximizes the chance that two randomly selected targets will

have the ordering of their apparent importance oposite to the ordering of their real

importance. We have developed two algorithms based on this idea. The first just uses

the idea on the whole set of targets without considering their spacial relations (Figure 4)

and the second uses additional information about the sensors’ starting positions as

well as the information about the exact positions of the targets (Figure 6). The later

algorithm uses the earlier as a sub-method.

The algorithm GlobalSteps in presented in Figure 4 ignores the mobility ranges of

the sensors and positions of the targets. It repetitively takes a large as possible set of the

most important targets, and makes them appear to have reverse ordering of importance.

The algorithm starts, in a very similar way to the algorithm DeceiveMax, by finding the

least important target d that can be modified to appear the most important. However,
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Input: T – set of targets; ER : T → R+ – real importance; ∆+,∆− : T → R+ – the
boundaries in which the adversary chooses the apparent importance

Output: masked : T → R+ – apparent importance of the targets; decoys ⊂ T – the targets
turned to strongest decoys

1: while T 6= ∅ do
2: MAX := arg max(ER(T ))
3: S := {t1 ∈ T : ∀t2 ∈ T ER(t2)−∆−(t2) ≤ ER(t1) +∆+(t1)}
4: d := arg mint∈S ER(t)
5: Between := {t ∈ T : [ER(t) − ∆−(t), ER(t) + ∆+(t)] ∩ (ER(MAX) −

∆−(MAX), ER(d) +∆+(d)) 6= ∅}
6: ε := (masked(d)−masked(MAX))/(|Between|+ 1)
7: val := ER(d) +∆+(d)− ε
8: for t ∈ Between in increasing order do
9: if ER(t) +∆+(t) ≥ val ≥ ER(t)−∆−(t) then

10: masked(t) := val
11: else
12: masked(t) := ER(t)−∆−(t)
13: end if
14: val := val− ε
15: end for
16: T := T \Between
17: Decoys := Decoys ∪ {d}
18: end while
19: return masked,Decoys

Fig. 4 GlobalSteps – a method for creating deception for multi-agent case that ignores the
spacial relation of the targets.
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Fig. 5 Illustration of the deception created by the GlobalSteps algorithm.

instead of modifying all the more important targets down to the boundaries of their

importance, it attempts to modify them to have apparent ordering opposite to their

real ordering. It further ignores all the targets that have been already modified and

performs the same change in ordering with the remaining targets. The algorithm ends

when all targets are modified.

The result of the algorithm is illustrated in Figure 5. The x axes depicts all the

targets in the problem sorted by their real importance and the y axes is a scale of

importance. In this example, we assume a high number of targets; hence we do not

depict each of them individually. For the case of importances drawn from a uniform

distribution, the real importances of targets create the solid diagonal line (from top

left to bottom right). The boundaries in which the adversary can select the apparent

importance for individual targets are marked by the dashed diagonal lines. Algorithm

GlobalSteps starts from the left-most targets and group them to several levels of impor-

tance. In each level, it orders their apparent importances opposite to the order of their
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Input: SensorPos – the positions of the sensors; T – set of targets; ER : T → R+ – real
importance; ∆+,∆− : T → R+ – the boundaries in which the adversary chooses the
apparent importance

Output: masked : T → R+ – apparent importance of the targets
1: queue Positions := SensorPos
2: Processed := ∅
3: while Positions 6= ∅ do
4: pos := pop(Positions)
5: CloseT := targets in T a sensor can cover from pos
6: if pos ∈ Processed ∨ |CloseT | ≤ 1 then
7: continue
8: end if
9: T := T \ CloseT

10: (locMax,Decoys) = GlobalSteps(CloseT,ER,∆+,∆−)
11: masked(CloseT ) := locMax
12: Positions := Positions ∪Decoys
13: Processed := Processed ∩ {pos}
14: end while
15: return masked

Fig. 6 LocalSteps – a method for creating deception in multi-agent case that considers the
spacial relations of the targets.

real importances. The apparent importance of the targets is marked by the sequence

of thick lines.

GlobalSteps does not use any information about the positions of the targets. Gen-

erally, it may lead to less efficient deception (see the following example).

Example 2 If we apply algorithm GlobalSteps to a setting which includes (9, 6, 4) and

∆ = 2 it creates deception (7, 8, 6). A sensor choosing among all the targets or among

the first two targets is deceived, but a sensor choosing among the second and third

target is not. However, if the first target is too far from the other two targets and all of

them cannot be in mobility range of any sensor at once, we can use this information to

create a more efficient deception (7, 4, 6). The sensor with the first target in its mobility

range will pick it anyway (there is no other alternative), but if the sensor has the other

two targets in its mobility range, it will pick the less important (third) target.

This observation inspires the algorithm LocalSteps in Figure 6. This algorithm as-

sumes it knows the initial positions of the sensors. It gradually uses algorithm Global-

Steps to decide about the apparent values of subsets of targets that are in the mobility

range from these positions. After each call of GlobalSteps, it removes the targets it

considered and adds the positions that were used as decoys (are likely to be covered

by the näıve algorithm) to the queue of positions to process.

We expected this algorithm to be more efficient in the case of sparse scenarios where

the local deceptions prepared for individual agents do not interact. In the setting of

Example 2 and two agents at the mentioned positions, the algorithm LocalSteps indeed

creates the more eficient deception. However, the effect of the additional information

is questionable in the scenarios with high overlap of the mobility ranges of the sensors.

Questionable is also the effect of the deception algorithms after multiple iterations of

the sensor placement algorithms. That is why we evaluate the quality of the deception

created by the proposed algorithms experimentally in Section 7.



23

7 Experimental evaluation

In this section, we experimentally evaluate the derived solutions of the formal single

sensor deception game, the quality of the deception heuristics, as well as the perfor-

mance of the proposed local search methods for solving the multi-agent deception aware

problem defined in Section 3.

In most of the experiments, we followed the following scheme:

1. A random scenario is generated.

2. A method for creating deception modifies the scenario within the bounds.

3. The sensors placement algorithm observes only the apparent importances.

4. The placement is evaluated based on the original real importance values.

7.1 Formal Deception Game

In our first set of experiments we evaluate the strategies proposed in Section 4 for

a single sensor covering one of several deceptive targets. The proposed methods are

compared to three baseline algorithms.

– The näıve Max algorithm selects the target that seems to be the most important

and it does not take into account any possibility of deception.

– The Random algorithm ignores the available information about targets’ importance

completely and selects one of the targets uniformly (randomly).

– The Dom algorithm is a simple heuristic that ignores all the targets that are cer-

tainly not the most important (i.e., dominated) and chooses randomly one of the

remaining targets (i.e., choosing uniformly a target from

{t ∈ T : @t2 ∈ T bottom(t2) > top(t)}).
For simplicity of presentation, we determine the capability of the adversary by the

constant ∆, which is the same for all targets (see Section 3.3).

In this experiment we evaluated three methods proposed in Section 4. The simplified

version of the deception aware method relative to the random strategy from Corollary 3

is denoted LPrand. We refer to the methods relative to the optimal selection from

Theorems 2 and 3 as LPratioOpt and LPdiffOpt respectively.

In the first experiment, a single sensor had to choose to cover one of five targets.

The real importance of each target was selected uniformly from the interval [0,29]. The

graphs in Figure 7 show the mean (real) importance of the covered target from 10000

runs of the experiment. The horizontal axes of the graphs represents the capability of

the adversary (∆).

In Figure 7(a), the deception is created by the algorithm DecieveMax described in

Section 6. This method optimally deceives the Max algorithm and uses the remaining

freedom in modifying the low importance targets to make the targets appear more

similar to each other. The results show that all the proposed methods are better than

Max for any selection of ∆. Moreover, thanks to the design of the LPrand algorithm, it

is never worse than the random target selection. The algorithms relative to the optimal

selection (LPratioOpt and LPdiffOpt) seem to be less careful. They perform better than

LPrand for smaller capabilities of the adversary. Nevertheless, they perform worse than

the random target selection for higher adversary capabilities.

In Figure 7(b), the setting was the same as in Figure 7(a), but the algorithm used

for deception was DecieveMax+ described in Section 6.1 that changes the importance
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Fig. 7 The importance of the target covered by the proposed and two baseline algorithms
in formal deception game scenario. The adversary uses its capabilities optimally against the
näıve approach based on algorithm DeceiveMax (a) and its modification (b) from Section 6.1.

of all but one target to the lowest possible option. The algorithm still deceives Max

optimally, but allows all the other algorithms to perform better. In this case, all the

proposed algorithms perform the same for lower ∆ and LPrand keeps its performance

best even for higher ∆.

7.1.1 Price of Paranoia

The results presented above show, that the proposed deception aware target selection

methods are beneficial, if the adversary optimally uses its capabilities in order to deceive

a sensor that uses the näıve Max algorithm to cover the most important target. In this

situation, the best algorithm would be a combination of LPdiffOpt for smaller values

of ∆ and Rand for higher values. However, we intend to use this algorithm in a multi-

agent setting, where agents change their positions and have limited mobility ranges. In

this setting, it is impossible to create a fixed deception that would be the worst case in

all the local deception games for the reasons discussed at the beginning of Section 6.2.

That is why we further evaluate the robustness of the proposed methods towards

overestimation of the quality of the deception. We examine the decrease in the quality

of the solution in case that no adversary is trying to deceive the sensor, but the sensor

expects otherwise. We call the function, mapping the expected adversary capability

to the decrease of the quality of produced solution (compared to the optimal solution

without deception), the price of paranoia. For our scenario, the price of paranoia can

be seen on Figure 8.

The optimal solution in case of no deception is the Max algorithm producing the

upper straight line in the figure. With increasing paranoia (i.e. the false belief about the

adversary activity), the performance of all the proposed algorithms gradually decreases

to the mean real importance. This decrease is higher in case of the more careful LPrand,

which performs as bad as a random selection when the capability of the adversary is

equal or larger to half of the maximal importance of a target. However, the price of

paranoya is much lower for the methods derived relative to the optimal selection. The
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Fig. 8 The price of paranoia for the proposed algorithm on formal deception game scenario.

LPdiffOpt algorithm performs better than the random selection in all cases where the

adversary is not assumed to present completly arbitrary numbers.

Because of the comparable results of all the deception aware methods in the case

of exact knowledge about the used deception capabilities and clearly superior perfor-

mance of LPdiffOpt in the case of overestimation of the adversary capabilities, we use

LPdiffOpt as the local deception aware method in our multi-agent experiments.

7.2 Multi-agent Experiments Settings

This section describes the main settings we use in the multi-agent experiments and

explains the rationale behind the parameter selection.

The main challenge when solving a problem with multiple sensors is the coordina-

tion among the agents. Since agents make local decisions on their movements lack of

coordination can cause some targets to remain uncovered while other are covered by

more sensors than required. An important extreme case are scenarios with relatively

small number of agents in a large space. If the agents do not have any neighbors most

of the time, the game reduces to a high number of simultaneously played single sensor

games and there is no need for coordination. Thus, the benefit of using the deception

aware method results directly from the higher expected coverage in each step of the

single sensor games. Without the need for coordination, the overall quality of all the

proposed deception aware local-search methods is the same. The main difference be-

tween the methods in such a sparse scenario is the speed of convergence. In the MGMy

and maxStays algorithms all (or almost all) agents are able to change their position in

each step. In DSAy only a portion of the sensors (proportionally to the parameter p)

move, hence, the overall convergence is slower.

More interesting results can be expected for denser sensor networks with high

overlap of the targets in individual the sensors’ mobility ranges. We used two main

experiment settings which both included 128 targets of random importance from (0,99]

placed randomly on a 100x100 positions large grid.

Setting 1: In our first experimental scenario, each agent was able to fully cover

the requirement of any target (i.e., ∀a ∈ A Credi = 100). There were 64 agents

with mobility range of 20 positions. This means that each sensor had approximately



26

10% of the area in its mobility range; hence it was able to cover on average 10% of the

targets. With 64 uniformly randomly placed sensors, we can estimate from the binomial

distribution that any position is covered by at least 2 agents in over 99% cases. Covering

a target with more than one agent is useless in this setting so coordination among the

agents is clearly needed.

Setting 2: The second experimental setting required more sensors to cover a single

target. In this case if the number of sensors is small, the situation does not change

dramatically from the first setting. With higher amount of uncertainty about the target

importance, it is mostly beneficial to cover each target by only a single sensor. More

interesting dynamics appear if the number of sensors is higher than the number of

targets; hence they are forced to cover the targets by more than one sensor and the

question is which targets to cover with more sensors than others and which of the

targets should not be covered at all. Thus, the parameters of the second setting were

the same as in the first one with the exception of the number of agents, which was 150

and the credibility of the agents that was set to 50.

7.3 Deception Algorithms Evaluation

In order to evaluate the benefit of using the deception robust algorithms in the multi-

agent setting, we first need to evaluate the success of the proposed deception creating

methods in deceiving näıve algorithms. In the following experiments, we randomly

generate scenarios, apply an algorithm to create deception and then run the näıve

MGM algorithm (See Section 5.1) for 100 iterations.

We compare two algorithms for creating deception, which were described in Sec-

tion 6.2, with two baseline algorithms. The evaluated methods are:

– The algorithm GlobalSteps depicted in Figure 4.

– The algorithm LocalSteps depicted in Figure 6.

– Random, which selects the apparent importance uniformly in the interval that is

available for the adversary.

– Mean,which computes the mean importance of all targets in the scenario and sets

the apparent importance of the targets with real importance above the mean as

low as possible and the remaining targets as high as possible.

The quality of the deception generated by the algorithms in Setting 1 can be

seen in Figure 9(a-b). We plot the quality of the coverage achieved after 10 iterations

(Figure 9(a)) and 100 iterations (Figure 9(b)) of the algorithm. The results after 10

iteration give us an idea about the quality of the achieved coverage in time critical

situations and the results after 100 iteration generally represent a stabilized solution

of maximal quality achievable by the investigated methods.

The weakest deception in this setting (for any ∆) is produced by the Random

algorithm. With increasing delta, the coverage quality gradually decreases to the half

of the value achieved without any deception consistently after 10 as well as after 100

steps. For ∆ = 90, there is practically no correlation between the observed value

and the real importance of the target. Thus, the targets to be covered by the MGM

algorithm are picked randomly. As a result, the achieved coverage values constitute

the lower bound on any reasonable deception aware algorithm in the same way as the

random algorithm does for the single-sensor case. This result is always achievable for



27

200
400
600
800
1000
1200
1400
1600
1800
2000
2200

0 10 20 30 40 50 60 70 80 90

S
um

of
C
ov
er
ed
Im
po
rt
an
ce

Delta

After 10 iterations

Mean

LocalSteps
GlobalSteps

Random

(a)

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90

S
um

of
C
ov
er
ed
Im
po
rt
an
ce

Delta

After 100 iterations

Mean

LocalSteps
GlobalSteps

Random

(b)

200
300
400
500
600
700
800
900
1000
1100
1200

0 10 20 30 40 50 60 70 80 90

S
um

of
C
ov
er
ed
Im
po
rt
an
ce

Delta

After 10 iterations

Mean

LocalSteps
GlobalSteps

Random

(c)

2500

3000

3500

4000

4500

5000

5500

6000

0 10 20 30 40 50 60 70 80 90

S
um

of
C
ov
er
ed
Im
po
rt
an
ce

Delta

After 100 iterations

Mean

LocalSteps
GlobalSteps

Random

(d)

Fig. 9 Evaluation of the proposed methods for creating deception in multi-agent setting after
10 and 100 iterations of the näıve MGM algorithm. Figures (a-b) represent the reached coverage
for the case with 64 agents with credibility 100% covering 128 targets (i.e, Setting 1 ). (c-d)
are for the case of 150 agents with credibility 50% (i.e, Setting 2 ). The x axis is the adversary
capability ∆ in all figures.

the sensors team by assigning random importance values to the targets and covering

them using the näıve algorithm.

All the other deception algorithms are clearly superior to the Random deception in

this setting. The coverage achieved by the näıve algorithm facing any of them was lower

for all values of ∆. Surprisingly, the results show that using the additional information

about positions of the targets and the sensors in the simple way as it is done by the

LocalSteps algorithm is counterproductive. The GlobalSteps method creates strongest

deception in the short run (10 iterations) and a more similar but still stronger deception

in the long run (100 iterations). The reason is that fixing the deception to be efficient

from one position restricts the options of creating deception from another. This is

true not only for two neighboring sensors in one iteration, but also for two subsequent

positions of the same sensor. Even if we run the experiment on the same setting with

just a single sensor, the GlobalSteps methods causes the näıve algorithm to cover a

less important target than LocalStep after second iteration. The deception caused by

LocalSteps is stronger only after the first iteration of the näıve algorithm.

The results for measuring the quality of the näıve MGM algorithm facing different

forms of deception in Setting 2 are shown in Figures 9(c) and 9(d). The situation

after the first 10 iterations is similar to the case of Setting 1 with approximately half
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the coverage. The reason is that even if the agents have Credi = 50, they generally

cover exactly the same targets in the first iterations of the algorithm. Once a target is

covered by one sensor, its importance drops by 50, which makes it unlikely to be the

apparently most important target in the mobility range from the sorounding positions.

As a result, the first 20 sensors are placed in a very similar fashion in both settings.

The number of concurrently moving agents for different settings of ∆ is roughly

the same in Setting 2 and Setting 1. However, the improvement in the performance

of the näıve algorithm for Mean deception with increasing values of ∆, seems to be

stronger in Figure 9(c). The explanation is that for lower values of ∆, agents tend to

cover first the targets of high real importance. Sensors with credibility 50 cannot fully

satisfy their requirement and hence the overal coverage is only slightly higher than half

of the coverage achieved by sensors with credibility 100. On the other hand, in case of

strong deception, the sensors first cover the less important targets. Their requirement

can be fully covered even by the sensor with credibility 50; hence the achived coverage

is almost the same as in the case of sensors with credibility 100.

The results after 100 iterations reveal that the the proposed deception generating

algorithms are less effective when sensors do not have enough credibility to fully cover

targets. The more sophisticated deception algorithms perform well only for smaller

setting of ∆, but for higher values, they perform only slightly better than the random

deception.

The simplest idea of taking the importance of the important targets down and the

remaining targets up works best for larger deception capabilities from all the proposed

deception algorithms. For high values of ∆, this deception causes the targets of low

importance to be covered by two sensors before the targets of high importance are

covered at all.

Based on the results in this section, we further use the strongest deception in our

experiments. Namely we use algorithm GlobalSteps for all sizes of ∆ in Setting 1 and

∆ ≤ 30 in Setting 2. We use the algorithm Mean for creating deception for remaining

values of ∆ in Setting 2.

7.4 Multi-agent Local Search Algorithms

Next, we present results that indicate that the proposed deception aware local methods

(presented in Section 4) can be successfully used as the method executed by each agent

in the decentralized local search algorithm for solving the sensor placement problem

defined in Section 3.

The performance of all the local search algorithms (suggested in Section 5) in

Setting 1 with deception created by algorithm GlobalSteps is presented in Figure 10.

As before, we assume that the adversary capabilities are defined by a fixed constant ∆

for all the targets. The presented results are the mean values form 50 random instances

of the problem, which were the same for all algorithms.

The graphs show the quality of target coverage as the sum of real importances

of the covered targets. The first three graphs depict the development of the coverage

quality with increasing number of iterations for three values of adversary capability

∆ = {30, 50, 80}. The last graph shows the quality of the coverage after 10 iterations

of running the algorithm for the whole range of ∆ values.

The novel local search method introduced in Section 5.3 (maxStays) consistently

performs best in the presented experiments. It reaches its maximal value after less
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Fig. 10 Comparision of the sum of real importances of the covered targets for various methods
on a scenario with general MR and minimal SR. The deception aware methods were based on
the LPdiffOpt algorithm and they are indicated by ”y” in the legend. (a-c) Show the conver-
gence of the methods on a scenario with adversary capabilities ∆ = {30, 50, 80} respectively.
(d) Shows the coverage reached in the 10th iteration of the algorithms.

than 10 iterations and keeps the same quality of coverage with minimal oscillations.

The fast convergence is caused by allowing all agents to change their assignment in

each iteration. This is also the main reason why the maxStays method outperforms all

the other methods for all settings of ∆ after 10 iterations (Figure 10(d)).

Besides it’s fast convergence, maxStays is also robust against deception. Even if

we run the experiment long enough to allow all the other methods to converge to

a stable quality, maxStays still clearly outperforms all the näıve methods. Moreover,

the quality of the coverage resulting from the maxStays method is the same as the

quality reached by the deception aware MGMy after a higher number of itteration

(see Figures 10(a-c)). MGMy avoids any coordination problems for the cost of slow

convergence. This indicates that coordination provided by maxStays is really efficient

and does not decrease the quality of the solution.

Both the näıve local search methods converge to a solution of the same quality in

this setting. They reach the maximal performance after almost the same number of

iterations, but an interesting phenomenon is that the graphs for DSAn are concave and

the grahs for MGMn are convex in Figures 10(a-c). The behavior of DSAn is more

intuitive, first all the sensors cover some targets, moving from their initial random

positions where they most likely do not cover anything. However, due to the random
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coordination, it is possible that multiple sensors will cover the same target, which is

inefficient in this setting. With increasing number of iterations, sensors would switch

to another target if their current target is covered sufficiently and in more cases do

not have such high local reductions. On the other hand, with MGMn almost the

same (lower) number of agents move in each of the first 30 iterations. When using the

GlobalSteps algorithm for creating deception (see Figure 5), the targets that seem to be

most important (cause maximum local reduction message) are actually the strongest

decoys. That is why the improvement of coverage quality caused by covering these

targets is quite low. However, after these decoys are covered, more and more important

targets are selected and the quality of the coverage rise faster.

The efficiency of the deception robust local method in this setting can be seen also

in Figure 10(d) showing the situation after 10 iterations. The quality of coverage for

∆ = 0 is generally caused mostly by the amount of concurrent movements allowed by

individual methods. However, even after this little number of iterations, we can clearly

see that the quality of coverage by the same base method (DSA/MGM) always decrease

much faster in the näıve version compared to the versions with deception robust local

method.

7.4.1 Redundant Agents

One interesting phenomenon in the results presented in Figure 10(a), is that for a small

capability of the adversary, even the näıve version of DSA outperforms the deception

aware DSA algorithm after running for enough (20 or more) iterations. The MGM

algorithm does not exhibit this pathology. Since MGM does not allow neighboring

agents to move in the same iteration, it makes sense to assume that the reasons are

the collisions of the assignments of neighboring agents that move in the same iteration.

In order to validate this claim, we experimentally evaluated the number of collisions

in this scenario. In Setting 1, the credibility of each agent is equal to the maximum

possible importance of a target; hence if a target is covered by more than a single

agent, the remaining agents covering the target are redundant. The mean number of

redundant sensors in a setting with ∆ = 30 are plotted in Figure 11.

The number of redundant agents with the deception aware DSA stays relatively

high with increasing number of iterations. Fifteen targets are redundant on average.

This is not true for the case of näıve agents. At first, the näıve agents are not covering

any targets and only few targets in each neighborhood are considered most important,

hence all the agents head to cover these targets and high redundancy is generated.
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However, after 40 iterations of the algorithm, the solution is stabilized and none of

the agents are redundant. This stabilization corresponds also to reaching the maximal

coverage in Figure 10.

Redundant agents appear when two agents consider the same uncovered target,

among the targets within their mobility ranges, to be the most important, and decide

to cover it (i.e., change their position). In the case of näıve agents, this happens less

with an increasing number of iterations. For example, assume two sensors covering

three targets with apparent importances (8,7,6). After a couple of iterations, the naive

DSAn algorithm covers the targets with importance 7 and 8. This situation is sta-

ble. None of the agents has an incentive to change its assignment and no redundant

sensors can appear in future iterations. On the other hand, in the same situation, the

deception aware agent knows it could have been deceived and randomizes over all the

targets. That is why, even in the situation of covering the targets which appear to be

most important (7 and 8), the agent assumes that there is a chance that the target

with apparent importance 6 is actually the most important one; hence it covers the

target with a nonzero probability. If both the agents decide to cover it, a redundant

assignment can occure. In the complete experimental setting, these effects cause that

that redundant assignments are always present for the DSAy algorithm. This effect is

reduced for smaller values of the probability parameter for changing position p, but

even for very low values of p it cannot be completely avoided. Moreover, with suffi-

ciently small p that reduces this effect, the speed of convergence is no longer faster than

the speed of convergence of MGM based algorithms that completly avoid redundant

assignments. As a result, we conclude that DSAy is not a suitable algorithm for this

setting.

The maxStays algorithm explicitly avoids redundant agents assignments and as-

sures maximal concurrency, which are the main reasons of its clearly superior perfor-

mance in this scenario.

7.5 Sensors with Limited Credibility

This section reports the results of the local search algorithms in Setting 2 (i.e, 150

sensors with credibility 50). Some targets should be covered by two sensors.

The results are presented in Figure 12. We do not include the results for the DSA

algorithm in this experiment. The previous experiments show that the näıve DSAn

performs comparable to MGMn and the deception aware DSAy exhibits problems

with redundant assignments suitable only with low values of the parameter p, which

makes it perform similar to MGMy.

The dominance of MGMy over MGMn shows that it is beneficial to use the de-

ception aware local method even if the targets cannot be fully covered by single sensor.

The deception aware algorithm both converges faster and reaches higher performance

after high number of iterations. The convergence of the MGMn slows down for a while

after certain number of iterations and then speed up again. This is because the algo-

rithm first covers the apparently most important targets by one sensor. This causes the

(remaining) apparent importance of the targets to drop and the other agents do not

pick these targets for covering. However, after a large portion of the apparently impor-

tant targets are covered, the sensors start covering the targets that are already covered

by one agent (because of limited credibility). This is where the slow down starts. If

the apparently important targets are decoys created by the adversary, the first sensor
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Fig. 12 Comparision of the sum of real importances of the covered targets for various meth-
ods on a scenario where more sensors are required to fully cover the targets. The deception
aware methods were based on the LPdiffOpt algorithm and they are indicated by ”y” in the
legend. The graphs show the convergence of the methods on a random scenario for adversary
capabilities ∆ = {30, 50, 80} respectively.

already fully covers the low real importance of the target. Adding the second sensor to

this target does not have any effect on the optimized value.

The maxStays algorithm that dominated over all the other algorithms in the first

setting, where a single sensor was enough to cover a target completely, did not always

perform best in this setting. For small values of ∆, it was outperformed even by the

näıve MGM. The reason is the relatively high number of agents that give up on covering

any of the targets due to coordination. Agents in maxStays gives up on covering a

target if the sum of credibilities of other agents that intend to cover this target with

higher probability than their own, is higher than the maximal possible importance

of the target. If an agent gives up on covering all the targets in its mobility range,

it performs a random move. This random move might result in a location from which

targets which were previously in range are not considered any more. Thus if other agents

did not move to cover such a target, it will remain uncovered. This also happened in

Setting 1, but the effect was not as strong because of the smaller number of competing

agents.

8 Conclusion

Realistic military applications of mobile sensing agents networks, are expected to in-

clude adversaries which try to reduce the network efficiency. Previous attempts to

address the problem of effectively monitoring (covering) an area using a network of

mobile sensing agents did not consider such an adversary in their model.

In this paper we focused on the ability of an adversary to use means of deception

(i.e. decoys, camouflage) to draw attention to less important targets and keep the more

important targets uncovered. The adversary is assumed to be able to either increment

or decrease the perceived importance of targets by a bounded amount.
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Our paper achieved three main contributions. The first, was a formalization of

the problem of deception in mobile sensor networks as an extension of the existing

DCOP MST model.

The second contribution was a method for selecting one of several targets in a way

that optimizes the expected real importance of the selected target. To this end, we

defined a formal deception game between a sensor choosing to cover one of several

targets and an adversary modifying their apparent importance in order to deceive it.

Using game theoretic techniques, we derived formally sound strategies that optimize

the selection of the target in case of the worst possible real importance of the targets,

consistent with the available observation. This approach results in several methods,

which are robust against deception. One of the strategies never performs worse than

a complete random selection which ignores all the (possibly misleading) information

observed. Another exhibits a very good performance in case of overestimation of the

adversary capabilities while still being robust against the well assessed deception. All

of the derived strategies are stochastic (mixed) and ensure the good performance over

a large number of game instances.

The third contribution was modifying the known local search algorithms for DCOP MST

to accommodate stochastic local strategies and proposing a novel local search algorithm

which was designed directly for problems with stochastic local strategies. As far as we

know, stochastic local strategies have never been used in local search for DCOP before.

We show that DSA-C is not suitable in this domain because of high number of conflict-

ing variable assignments. A modified version of the MGM algorithm performs well once

it converges, but the convergence is rather slow. The novel maxStays algorithm always

converges very quickly. It reaches the same performance as MGM in only a fraction of

steps if a single sensor is sufficient to fully cover a target, but its performance is weaker

if the credibility of the sensors is limited.

In future work we intend to investigate the use of distributed local search algorithms

with stochastic local strategies in the context of general DCOP.
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